Succinct Betti-2 Positivity and Its Complexity
Cauchy-Based Evaluation, ®©P-Completeness on a Promise Family,
Deterministic SAT Reductions, and Unconditional Circuit Lower
Bounds on Explicit Subfamilies

Alwin
University of Indonesia

Abstract

We study the decision problem (Ilg,): given a succinct (local-oracle) description (D) of a
bounded-degree simplicial (2)-complex (Kp), decide whether the second Betti number (82(Kp;Fs))
is positive. The central theme is the interaction between (i) topological invariants of low-
dimensional complexes and (ii) computational complexity under succinct representations, with
implications for the landscape surrounding (P) versus (NP).

We present two complementary reduction pipelines. The first pipeline defines a Cauchy-based
evaluation problem (SCE-Dec) over (Fax), proves that SCE-Dec can be expressed as an (IFp)-
linear form in evaluator bits, and encodes this linear form as a bounded-occurrence (F3)-linear
system. We then convert such systems into CW (2)-complexes and further into bounded-degree
simplicial (2)-complexes via a star-triangulation procedure. This yields a mapping (ProbeBit)
from SCE-Dec instances to local-oracle descriptions (D) such that (82(Kp) > 0) if and only
if the target SCE-Dec bit is (1). As complexity consequences, we obtain (®P)-completeness
of (II,) restricted to the promise family (Im(ProbeBit)), and a one-sided randomized many-
one reduction (SAT <,, IIg,) on the same promise family using the Valiant—Vazirani isolation
lemma (standard result; citation placeholder). We also prove an unconditional deterministic
evaluation-local query lower bound (¢ > N) for computing SCE-Dec.

The second pipeline gives a deterministic “witness-expansion” construction that maps a
Boolean formula (¢) to a disjoint union (K,) of constant-size sphere/disk gadgets indexed by
assignments. This yields a parsimonious equality (82(K4;F2) = #SAT(¢)), hence deterministic
(SAT <,,, IIg,) and (#SAT <,,, Compute-53) (function hardness). Finally, we provide uncondi-
tional nonuniform lower bounds against (AC"), De Morgan formulas, and (AC[p]) on explicit
parity-based subfamilies via projection reductions from (PARITY) (standard results; citation
placeholders).

We explicitly separate validated statements from steps requiring either standard citations or
remaining formalization (oracle-interface encoding details and a triangulated-disk homeomor-
phism lemma). No unconditional separation such as (P # NP) is claimed.

1 Introduction

1.1 Motivation and context

The question (P) versus (N P) sits at the center of theoretical computer science. One broad strat-
egy toward understanding the landscape around (P) and (N P) is to analyze natural computational
problems that arise outside of “synthetic” encodings, and to determine how their structural content
(algebraic, geometric, topological) interacts with algorithmic and lower-bound methods. Topolog-
ical invariants, and Betti numbers in particular, provide canonical examples: they are intrinsic,

stable under homeomorphisms, and encode global structure in a way that is often difficult to infer
from local information.

This paper concerns the complexity of deciding whether the second Betti number (/2) of a
simplicial (2)-complex is positive, when the complex is given succinctly. The decision problem we
study is:

Given a local-oracle (succinct) description (D) of a bounded-degree simplicial (2)-complex (Kp),
decide whether (52(Kp;Fe) > 0).

The bounded-degree condition is essential: it keeps local neighborhoods constant-size, enabling
local-oracle access to faces, edges, and incident structure. However, even under bounded degree, a
succinctly represented complex can have exponentially many simplices relative to the input length,
making it nontrivial to relate “local query access” to global invariants such as (f2).

While the main topic is not a proof of (P # N P), the results are relevant to (P) versus (NP)
in three ways:

1. Hardness and completeness phenomena for (IIg,) (both under promise restrictions and in un-
restricted deterministic NP-hardness via explicit gadget families) illustrate how global topo-
logical invariants naturally encode counting and satisfiability.

2. Query lower bounds in oracle models demonstrate information-theoretic barriers for evalua-
tion tasks intimately related to the reductions.

3. Unconditional circuit lower bounds on explicit subfamilies give a clean, “white-box” separation
of (Ilg,) from low-depth circuit classes on carefully chosen inputs, complementing the more
algebraic and topological reductions.

1.2 Two reduction pipelines

We develop two distinct pipelines, each with different strengths and technical requirements.

Pipeline A (Cauchy/SCE — linear systems — topology: the ProbeBit route). We de-
fine a succinct evaluation problem SCE-Dec based on multiplying a vector (z(X) € IFQIQ), generated
by an evaluator circuit (X), by an explicit Cauchy matrix (Cy € IF;\,ZXN). The target is a single
output bit of the form
SCENJ‘J(X) = ﬂ't((CNx(X))Z) € Fo.

We show that SCEy;+(X) is an (F2)-linear form in the evaluator output bits (x;,) with coef-
ficients (mﬁ/’z’t) € Fy). We encode this linear form as a bounded-occurrence (Fg)-linear system
SysBit(V,7,t,b, X) such that the system has a nonzero solution if and only if SCEN;(X) = b.
Next, we build a CW (2)-complex K“V(Sys) whose second homology (H2) is isomorphic to the
solution space Sol(Sys). Finally, we convert the CW complex into a bounded-degree simplicial (2)-
complex K (Sys) by triangulating each (2)-cell via a star-triangulation; in the intended form, this
triangulation preserves homology. The composition yields a mapping (ProbeBit) from SCE-Dec
instances to local-oracle descriptions of bounded-degree simplicial (2)-complexes such that

B2 (KprobeBit(N,it,b,x); F2) > 0 <= SCEy,;+(X) = b.

Pipeline B (Witness-expansion route: deterministic SAT and #SAT). Independently,
we define a deterministic construction mapping a Boolean formula (¢) to a disjoint union

Ke= || Ca
z€{0,1}"

where each component C, is a constant-size simplicial (2)-complex that is a “sphere gadget” if
¢(x) =1 and a “disk gadget” if ¢(x) = 0. Over (Fz), the sphere gadget has (52 = 1) and the disk
gadget has (2 = 0). By additivity of homology over disjoint unions, we obtain

Bo(Ky:;Fa) = #SAT(¢),

which immediately implies deterministic (SAT <,, IIg,) and parsimonious (#SAT <,,, Compute-f2).

1.3 Main results and careful scope statements

We state high-level theorems here and provide full proofs in Parts 2-5. Statements that rely on
standard external results are explicitly labeled. Statements whose proofs require appendix-level
formalization are labeled with “Proof deferred” and the location.

Theorem 1.1 (ProbeBit correctness; proof in Parts 2-4; one topological lemma in Appendix
A). There exists an explicit mapping (ProbeBit) taking an SCE-Dec instance ((N,i,t,b,X)) to a
local-oracle description (D) of a bounded-degree simplicial (2)-complex (Kp) such that

/BQ(KD;]FQ) >0 <— SCEN,i,t(X) =b.

Proof status: the algebraic, gadget, and CW-homology steps are proved in Parts 2-3; the simpli-
ctalization and homology-preservation step uses a triangulated-disk homeomorphism lemma. Proof
deferred to Appendiz A, where we either (i) give a full proof, or (ii) invoke a standard PL-topology
result with citation placeholder.

Theorem 1.2 ((¢P)-completeness on a promise family; proof in Part 4). Let Zp,obe := Im(ProbeBit)
be the promise family of local-oracle descriptions produced by (ProbeBit). Then (Ilg,) restricted to
Iprobe 15 (BP)-complete under deterministic many-one reductions.

Scope note: This is a promise statement: hardness and membership are shown only for inputs
guaranteed to lie in Ipope-

Theorem 1.3 (One-sided randomized SAT reduction on the ProbeBit promise family; standard
external lemma). There is a one-sided randomized many-one reduction

SAT <,, Tg, |

Zprobe *

Proof uses: Valiant—Vazirani isolation lemma (standard result; citation placeholder).
Scope note: Again a promise statement.

Theorem 1.4 (Evaluation-local query lower bound; unconditional; proof in Part 4). Fiz (N,i,t).
Any deterministic evaluation-local algorithm that computes SCEn ;+(X) for all evaluator circuits
(X) must query (X (7)) for at least (N) distinct indices (j € [N]) in the worst case.

Theorem 1.5 (Witness-expansion parsimonious equality; deterministic; proof in Part 5). There
exists a deterministic mapping (¢ — Dy) producing a local-oracle description (Dy) of a bounded-
degree simplicial (2)-complex (Kp,) such that

Ba(Kp,;F2) = #SAT(9).

Consequently, (SAT <,, Ilg,) and (#SAT <,, Compute-32). Proof status: topological facts about
the constant-size gadgets are proved directly (finite chain computation), and the disjoint-union
additivity is proved in Part 5.

Theorem 1.6 (Unconditional circuit lower bounds on explicit subfamilies; proof in Part 5; standard
external results). There exists an explicit subfamily (F C) instances of (Ilg,) such that g, [F
computes (PARITY) under a projection reduction. Hence:

o (Tlg, ¢ ACY) (nonuniform),
o (Ilg,) requires quadratic-size De Morgan formulas on (F), and
. (T, ¢ AC") for odd primes (p),

using standard results about (PARITY) (citation placeholders).

Important clarification: These are unconditional lower bounds, but they are proved via an explicit
hard subfamily (F). The implication to the global language is by restriction: if the full language
were in a circuit class, then its restriction to (F) would be as well.

1.4 What this paper does not claim

o We do not claim an unconditional separation such as (P # NP).

o Several results are explicitly formulated as promise results (notably (&P)-completeness and
(SAT <,,) on (Im(ProbeBit))).

o We keep a strict separation between:

— deterministic NP-hardness via witness-expansion (unrestricted), and

— promise-family completeness via ProbeBit.

1.5 Organization of the paper (across five parts)

o Part 1 (this part): definitions, models, and problem statements.

e Part 2: SCE-Dec definition; linearization into XOR masks; bounded-occurrence gadgets;
construction of SysBit.

o Part 3: CW encoding of linear systems; theorem (Hs = Sol).

o Part 4: simplicialization and homology preservation; ProbeBit mapping; (&P)-completeness
on promise family; SAT (<,,); evaluation-local lower bound.

o Part 5: witness-expansion (deterministic SAT and #SAT); unconditional circuit lower bounds
on explicit parity-based subfamilies; discussion, limitations, appendices, and bibliography
placeholders.

2 Notation and Preliminaries

2.1 Basic notation and conventions

o For (m € N), we write
[m] :={0,1,...,m —1},

i.e., we use 0-indexing throughout.

o All vector spaces are over (F2) unless explicitly stated otherwise. We write XOR as (@). For
vectors (u,v € F9), (u @ v) denotes coordinate-wise XOR.

« For a finite set (S), we use (F5) to denote the (Fy)-vector space of formal (IFo)-linear combi-
nations of elements of (.5), equivalently functions (S — Fa).

e Unless stated otherwise, “polynomial time” and “polynomial size” are with respect to the
length of the explicit input bitstring (e.g., a Boolean formula (¢) or an oracle/circuit descrip-
tion (D)).

e Degree bounds as constants. When we say “bounded degree” for a simplicial complex in the
local-oracle model, the bound (A) is treated as a fixed absolute constant that is part of the
model, not part of the input length.

2.2 Finite fields of characteristic two

We require arithmetic in (Fyx) to define the Cauchy-based evaluation problem. To avoid symbol
collisions, we reserve (K) for the finite field and (K) for a simplicial complex.

Definition 2.1 (Finite field model (K = Fyx) via a polynomial basis). Fiz (k € N). Let (pr(z) €
Folz]) be an irreducible polynomial of degree (k). Define

K':=For = Fa[2]/ (pr(2))-
Let o := z mod p(z). We use the basis
B:={l,a,d... ,ak_l}

to identify (K) with (F%) as a vector space.
Every element (u € K) has a unique coordinate representation

k—1
u = Z Ugo/, up € Fo.
=0

Definition 2.2 (Coordinate projections). For each (t € [k]), define m : K — Fy by
k—1
Tt (Z um/) = Uy
=0
Definition 2.3 (Bitstring encoding map). Given a bitstring (z = (20, ..., 2x_1) € F5), define
k—1
enc(z) := Z zat € K.
=0

When convenient, we view integers (r € [2¥]) as bitstrings (z € F5) via binary expansion and then
as field elements via enc.

Remark 2.4 (Boolean circuit realizability of basic field operations). Addition in (K) is coordinate-
wise XOR under (B). Multiplication can be implemented by polynomial multiplication followed by
reduction modulo (pg). Inversion can be implemented by an extended Euclidean algorithm in (Fa[z])
modulo (pg).

Proof status: The concrete circuit bounds (size poly(k)) are standard and will be provided as
a short self-contained proof in Appendiz B, or cited as standard finite-field arithmetic (citation
placeholder). This point is needed only to justify “succinctness” and time bounds in later sections.

2.3 Simplicial (2)-complexes and (F;y)-homology
We work with simplicial complexes of dimension at most (2) and with coefficients in (Fq).

Definition 2.5 (Simplicial (2)-complex). A simplicial (2)-complex is a triple (K = (V,E,T))
where

o (V) is a finite set of vertices,
e (EC (‘2/)) is a set of (unordered) edges,
o (T C (g)) is a set of (unordered) triangles,

such that the closure condition holds: if {u,v,w} € T, then {u,v}, {u,w},{v,w} € E. We assume
(K) has no simplices of dimension > 3.

Definition 2.6 (Chain groups and boundary maps over (Fq)). Let (K = (V, E,T)) be a simplicial
(2)-complex. Define chain groups

Co(K) :=F;, Ci(K):=Fy, Co(K):=TFy.
Define boundary maps 0o : Cy — C1 and 0y : C1 — Cy on basis simplices by
Ou({u, 0, w}) = {u,0} @ {u, w} & {v, w},
O ({u,v}) :==udv,
and extend (Fa2)-linearly. Since (K) has no (3)-simplices, C3(K) =0 and im(93) = {0}.

Definition 2.7 (Second homology and second Betti number). The second homology group over
(Fg) 8
HQ(K;FQ) = ker(ag) g CQ(K),

and the second Betti number is
ﬁQ(K; Fg) = diHl[[r2 HQ(K; Fg)

Remark 2.8 (Why (Fy) coefficients). All constructions in this paper are tailored to (Fa): (i) linear
systems are over (Fa), (ii) parity encodings are natural, and (iii) the simplicial/cellular boundary
computations are most transparent. Some gadget-based arguments extend to other fields, but we
restrict to (Fg) for consistency and to minimize ancillary technicalities.

2.4 Bounded degree and local-oracle descriptions

The central object of study is a simplicial (2)-complex given succinctly via a local-oracle description.

Definition 2.9 (Bounded-degree simplicial (2)-complex). Let (A € N). A simplicial (2)-complex
(K =(V,E,T)) is (A)-bounded-degree if every vertez (v € V') is incident to at most (A) edges and
at most (A) triangles.

We treat (A) as a fized constant throughout.

Definition 2.10 (Local-oracle description of a bounded-degree simplicial (2)-complex). A local-
oracle description (D) of a (A)-bounded-degree simplicial (2)-complex consists of:

1. Three nonnegative integers (ny,ng,nr) (in binary), intended as sizes of (V, E,T).

2. Boolean circuits implementing the following functions:

e Fdge endpoints oracle
Endp : [ng] — [nv] X [nv],
where Endp(e) = (u,v) returns the endpoints of edge (e).

e Triangle vertices oracle
Vertp : [n7] = [ny] X [ny] X [ny],

where Vertp(7) = (u,v,w) returns the vertices of triangle (7).

e Incidence listing oracles
IncEp : [ny] x [A] = [ng] U {L}, IncTp : [ny] X [A] = [np] U{L},

where IncEp (v, £) returns the £-th edge incident to (v) (or L), and IncTp(v,) returns
the £-th triangle incident to (v) (or L).

3. A promise that these circuits describe a valid (A)-bounded-degree simplicial (2)-complex (Kp =
(Vp,Ep,Tp)) with (Vp = [nv]), edges (Ep) induced by Endp, triangles (ITp) induced by
Vertp, satisfying:

o closure (every triangle’s edges exist in (Ep)),
e consistency with incidence lists,

o bounded-degree by (A).

Remark 2.11 (Why incidence lists are included). Without IncEp and IncTp, recovering all in-
cident edges/triangles around a vertex from Endp and Vertp alone may require Q(ng) or Q(nr)
work. The bounded-degree promise allows constant-length incidence lists, making “local access”
genuinely local.

Definition 2.12 (Size and query time in the local-oracle model). The description size (|D|) is the

total bit-length of the encoding of (ny,ng, nr) plus the encodings of the four circuits Endp, Vertp, IncEp, IncTp.
A query to (D) is one evaluation of one oracle circuit on a valid input. We say (D) is efficiently

queriable if each oracle evaluation runs in time poly(|D|) on a standard RAM model.

Additional formalization needed (encoding detail). In later sections (notably circuit lower
bounds via projections), we will require an explicit bit-level encoding of Boolean circuits so that
statements such as “the mapping (®) is a projectz'on/ACO ” are meaningful. We defer a fized
encoding convention to Appendiz C. Until that point, we treat (|D|) abstractly as “bit-length of the
circuit descriptions.”

2.5 Complexity classes and reductions used later

We recall the basic complexity notions used in Parts 4-5.

Definition 2.13 ((®P)). A language (L C {0,1}*) is in (®P) if there exists a nondeterministic
polynomial-time Turing machine (M) such that for all (),

x € L < #accy(z) =1 (mod 2),
where #accyy(x) is the number of accepting computation paths of (M) on input (x).

Definition 2.14 ((SAT)). (®SAT) is the decision problem: given a Boolean formula (¢), decide
whether #SAT(¢) is odd.

Standard result (citation placeholder). (®SAT) is (¢P)-complete under deterministic many-
one reductions.

Definition 2.15 (Deterministic many-one reduction). For languages (A, B C {0,1}*), we write
(A <, B) if there is a polynomial-time computable function (f) such that (x € A <= f(x) € B).

Definition 2.16 (One-sided randomized many-one reduction). We write (A <,, B) if there exists
a randomized polynomial-time function (f) and a polynomial (p) such that:

o If(x € A), then Pr[f(z) € B] > 1/p(|x|);
o If(x ¢ A), then Pr[f(z) € B] =0.

Definition 2.17 (Promise problems and restriction to a family). Given a language/problem (B)
and a subset (I) of inputs, we write (B [1) for the restriction of (B) to inputs in (Z). When we
say a hardness/completeness statement holds “on (Z),” we mean it is a promise statement: inputs
are guaranteed to lie in (Z).

3 Computational Problems Studied

3.1 Betti-2 positivity and related function problems

Definition 3.1 (Betti-2 positivity problem (Ilg,)). The decision problem (Ilg,) takes as input a
local-oracle description (D) promised to describe a valid (A)-bounded-degree simplicial (2)-complex
(Kp), and outputs
1 if Bo(Kp; Fa) > 0,
HﬂQ (D) = {

0 if B2(Kp;F2) = 0.

Definition 3.2 (Compute-(f32) as a function problem). The function problem Compute-Bo takes
as input (D) and outputs the integer Bo(Kp;F2) (in binary).

Remark 3.3 (Decision vs function hardness). A parsimonious reduction (#SAT(¢) — B2(Ky))
yields (#P)-hardness for Compute-fB2 and NP-hardness for (g,), but does not imply membership
of (g,) in (NP). In the succinct setting, membership questions can be nontrivial because witnesses
(e.g., a nonzero (2)-cycle) might be exponentially large in the description length.

3.2 A succinct Cauchy-based evaluation problem (SCE-Dec)

To connect (Ilg,) to parity counting, we introduce an auxiliary problem based on multiplication
by a Cauchy matrix over (Foxr). Full details appear in Part 2; we state the definition now since it
motivates subsequent reductions.

We will set k := [logy(4N)], ensuring 2¥ > 4N. We define an explicit (N x N) Cauchy matrix
(Cn) over (K = Fy:) using two disjoint sets of field elements {ag,...,any—1} and {bo,...,by_1}
(precise construction in Part 2).

An evaluator (X) is a Boolean circuit that, on input (j € [N]), outputs (k) bits interpreted as
an element (z;(X) € K). This defines a vector (z(X) € KV).

Definition 3.4 (SCE bit). Given integers (N > 1), (i € [N]), (t € [k]), and an evaluator (X),
define
SCEN,i+(X) := m((Cyx(X));) € Fo.

Definition 3.5 (SCE decision language SCE-Dec). Define
SCE-Dec := {(N,i,t,b,X) : SCEn;+(X) = b},
where b € Fy.

Remark 3.6 (Why SCE-Dec is a natural intermediary). The Cauchy matriz gives a dense linear
operator, and the output bit SCEN;+(X) can be expressed as a parity (XOR) of evaluator output
bits with explicit coefficients. This parity structure is the bridge that allows encoding into bounded-
occurrence (Fa)-linear systems, and then into (Hz2) of a (2)-comple.

3.3 Promise families and scope of hardness statements
Two distinct families of instances arise:

1. ProbeBit family (Zpyobe): instances (D) that are guaranteed to be of the form (D = ProbeBit(N,i,t,b, X)).
Many parity-counting completeness results are established on this family (Part 4).

2. Witness-expansion family (Zwg): instances (Dg) produced by the deterministic witness-
expansion construction mapping formulas (¢) to complexes (Ky). Deterministic (SAT <,
I1g,) is shown on this family (Part 5), and because the map is deterministic and polynomial-
time, this yields NP-hardness for the unrestricted decision problem (Ilg,).

We will keep these families separate. In particular:

o (®P)-completeness is proved for (Ilg, |), not for all inputs.

IProbe

¢ Deterministic NP-hardness is proved via witness-expansion, without using ProbeBit’s promise
restriction.

4 Background and Related Work (brief)

This section is intentionally concise and uses citation placeholders only, as required.

e Succinct representations. Many graph and combinatorial problems become substantially
harder under succinct encodings (e.g., circuit-encoded adjacency predicates). Our local-oracle
model for bounded-degree simplicial complexes is an instance of this general paradigm.

e Homology computation. Computing Betti numbers is a classical problem in computational
topology. Complexity varies sharply with dimension, coefficient field, and representation
format (explicit vs succinct). We focus on bounded-degree simplicial (2)-complexes under
local-oracle access, and on the specific decision predicate (f2 > 0) over (Fa).

o Parity and counting classes. The class (BP) and (®SAT) are standard objects in complexity
theory (citation placeholder), with (®SAT) being (®P)-complete.

o Valiant—Vazirani isolation. The Valiant—Vazirani lemma (citation placeholder) provides a
randomized reduction from SAT to UniqueSAT. In this paper it is used to obtain a one-sided
randomized reduction from SAT to (IIg,) on a promise family.

« Circuit lower bounds. Lower bounds for (PARITY) against (AC"), De Morgan formulas, and
(AC°[p]) are classical (citation placeholders). We use these results in a “white-box” manner
by exhibiting explicit parity-encoding subfamilies of (Ilg,).

5 Status Markers and Deferred Technical Items

To comply with strict formal-audit standards, we list items that will require either a complete proof
in later parts or an explicit citation placeholder.
5.1 Proof-deferred items (will be proved inside this paper)

« Appendix A: A topological lemma about triangulated disks being homeomorphic to (D?)
rel boundary, used to justify that triangulating CW (2)-cells preserves geometric realiza-
tion/homology.

+ Appendix C: A fixed bit-level encoding of oracle circuits, needed to make “projection/AC"-
computable mapping” statements formal.
5.2 Standard external results (citation placeholders required)
o Valiant—Vazirani isolation lemma.
o (BSAT) is (@P)-complete.
« (PARITY ¢ ACY); quadratic formula lower bounds; (PARITY ¢ AC°[p]) for odd primes.

5.3 Remaining “formalization risk” points (to be resolved in Parts 4-5)

¢ Oracle-interface completeness for witness-expansion: mapping the witness-expansion oracles
to the specific interface (Endp, Vertp, IncEp, IncTp) must be presented explicitly. The con-
struction is straightforward but must be written carefully.

e Succinctness of ProbeBit: the local decoding procedures for the ProbeBit-generated complex
require explicit indexing conventions for variables, equations, and boundary-walk access.

These are not intended to introduce new mathematical claims; they are required to satisfy the
“defined-before-used and proof-complete” standard.

Field-Linearity, Bit-Linear Forms for SCE, and the Bounded-Occurrence
System SysBit

6 Field-Linearity and Bit-Linear Forms for SCE

This section gives the algebraic core underlying the later topological encodings: a target output bit
of a succinct Cauchy evaluation can be written as an explicit Fs-linear form in evaluator output
bits. We also record a basic “nonzero-row” property that will later support an information-theoretic
lower bound.

Throughout, we use the finite-field representation from Section 2.2: for each k, we fix an
irreducible polynomial pi € Fa[z] of degree k, set K = Fa[z]/(px), write @ = z mod pg, and use the
basis B = {1,q,...,a""1}.

10

6.1 Cauchy matrix over Fo

We now define the explicit Cauchy matrix used in the Succinct Cauchy Evaluation (SCE) problem.

Definition 6.1 (Field size for parameter N, evaluation points, and Cauchy matrix). Fiz an integer
N > 2. Set
k = [logs(4N)], K := Fo,

represented using the polynomial-basis model from Definition 2.1.
Define the field elements

a; := enc(i) € K forie [N], bj := enc(N +j) € K forje [N],

where enc(-) is the bitstring-to-field encoding from Definition 2.8 (treating integers in [2¥] as their
k-bit expansions).
Define the Cauchy matrix

1

CN c KNXN by (CN)i,j = ‘ "
a; — b;

(Over characteristic two, subtraction equals addition; we retain a; — bj for readability.)

Lemma 6.2 (Disjointness of {a;} and {b;}). For all i,j € [N], a; # bj. Consequently, (Cn);; is
well-defined and nonzero.

Proof. By definition k = [logy(4N)], hence 28 > 4N > 2N. Therefore all integers in {0, 1,...,2N —
1} are distinct elements of [2¥]. The encoding enc : [2¥] — K is injective by construction (Definition
2.3). Thus enc(i) # enc(N + j) for all 4,5 € [N], i.e., a; # b;. Hence a; —b; # 0 in K, so the inverse
exists and is nonzero. O

6.2 Evaluators and the SCE target bit

We formalize the “evaluator” notion used informally in Part 1.

Definition 6.3 (Evaluator and implicit vector z(X)). Fiz N > 2 and k = [logy(4N)]. An
evaluator is a Boolean circuit

X : [N] = {0,1}%,

For each j € [N], write
X(j) = (2j0,%51,- -, wjp1) € F5,

and interpret it as a field element

k—1
zj(X) = Z :cﬂo/ e K.
=0

This defines an implicit vector x(X) = (zo(X),...,zny_1(X)) € KV.
Recall from Definition 3.4 that for indices i € [N] and t € [k],

SCEN’M(X) = Wt((CN.r(X))Z) € Fs.

11

6.3 Multiplication by a fixed field element is F,-linear

The key point is that, under a fixed basis, multiplication by a fixed x € K is an Fy-linear operator
and hence corresponds to a k x k matrix over Fs.

Definition 6.4 (Multiplication operator). For k € K, define
L, :K—>K, L (u) = Kku.

Lemma 6.5 (Fa-linearity and the coordinate matrix M (k)). For every x € K, the map Ly is
Fy-linear. Consequently, there exists a unique matrix

M (k) € F5*F

such that for every u = Zif:_& ugat € K,

k=1 /k—1
KU = Z (@ M(K)te ue> at.
t=0 \¢=0

Proof. Linearity: for u,v € Kand ¢ € Fy = {0,1}, L, (u®v) = k(u+v) = ku+ kv = L, (u) ® Lg(v),
and L (cu) = c¢(ku) holds because ¢ is central and ¢ € {0,1}. Thus L, is Fa-linear.
Existence/uniqueness of M (k): the basis B identifies K with F as vector spaces. Any Fa-linear
map K — K is determined uniquely by its values on the basis vectors of for ¢ € [k], which become
the columns of the matrix M (k). O

Lemma 6.6 (Invertibility for x # 0). If k € K\ {0}, then M (k) is invertible as a matriz over Fa.
In particular, every row and every column of M (k) is nonzero.

Proof. 1f k # 0, multiplication by & is a bijection K — K (since K is a field). Therefore the Fo-linear
map L, is invertible, hence its matrix representation M (k) is invertible over Fs.

If a row of M (k) were all zeros, then the corresponding output coordinate m;(ku) would be
identically zero for all u, implying the image of L, lies in a proper (k — 1)-dimensional subspace of
K, contradicting bijectivity. Similarly, a zero column would mean some nonzero basis vector maps
to 0, contradicting injectivity. O

6.4 The SCE output bit is an explicit XOR of evaluator bits

Fix N > 2, indices i € [N] and ¢ € [k]. We now define explicit Fo mask coefficients that represent
SCEn,;+(X) as an XOR of evaluator bits.

Definition 6.7 (Coefficient masks for a fixed output bit). Fiz N > 2, i € [N], and t € [k]. For
each j € [N], set
Kij = (CN)i,j e K, Mi,j = M(/ﬁ;i’ﬂ S Fng.

Define the mask coefficients

mg,fz,ivt) = (Mi,j)tyg elFy forje [N]’ Y= [k]

(N,i,t)

When N,i,t are clear, we write m;, for m;,

12

Lemma 6.8 (Bit-linear form for SCE). For every evaluator X,

SCEN(X) = @ @ (m{y™ -20).

JE[N] £€(k]

where xj ¢ € Fy is the {-th output bit of X (j), and the product is the usual multiplication in Fo (so
it either keeps or removes the bit).

Proof. By definition,
(Cnz(X)); = Z (Cn)ijxi(X Z Kij (X

JEN] JE[N]
where the sum is in K. Write z;(X) = Z]Z;& zjat. By Lemma 6.5, the t-th coordinate of r; jz;(X)
equals

me(ki i (X)) = @ (M(kig))rewje = @ m{y ajy.

telk] telk)
Taking 7 of the full sum and using that 7 is Fo-linear (it is a coordinate projection) yields
SCEN’i,t(X) = Wt((CNCU @ @ m} N,z,t 0
JE[N] Le[k]

O

Lemma 6.9 (Computability of a single mask bit). Fiz the field representation from Definition

2.1, and fir N > 2. Given indices i,j € [N] and t,l € [k], the coefficient bit m(N’Z’t) € Fy can be
computed in time polynomial in k.

Proof. We describe an explicit procedure.

1. Compute a; = enc(i) and b; = enc(N + j) as k-bit coordinate vectors in the basis B. This is
direct from Definition 2.3.

2. Compute d = a; — b; € K. In characteristic two this is coordinate-wise XOR.

3. By Lemma 6.2, d # 0, hence invertible. Compute d~! € K using standard polynomial
arithmetic in Fa[z]/(pr(2)); for example, compute the multiplicative inverse of d(z) modulo
pr(2) using the extended Euclidean algorithm for polynomials. This runs in time polynomial
in k.

4. Set Kij = d!eK.
5. To compute the matrix entry M (k;)¢¢, compute the product &; ; - a! € K in the polynomial
representation, reduce modulo pg, and read off its ¢-th coordinate. By Lemma 6.5, the

coordinate vector of x; ja is exactly the ¢-th column of M(k; ;). Thus the desired entry is
its t-th bit.

Each step is polynomial in k, so the overall procedure is polynomial in k. O

Remark 6.10 (Nonzero rows of mask matrices). Since k; ; = (Cn)i,; # 0, Lemma 6.6 implies that

for each fized t € [k] and each j € [N], there exists at least one { € [k] with mﬁ[’i’t) = 1. This will
later be used in an information-theoretic lower bound for a restricted oracle model.

13

7 Homogeneous Fy-Linear Systems and Bounded Gadgets

We now introduce the intermediate combinatorial object used throughout the remainder of the
paper: bounded-arity, bounded-occurrence homogeneous linear systems over Fo. We then develop
two reusable gadgets—EqTree and XorTree—that allow us to copy a single bit to many locations
and to aggregate large XORs while maintaining constant arity and occurrence.

7.1 Systems, arity, and occurrence
Definition 7.1 (Homogeneous Fa-linear system). A homogeneous Fa-linear system is a pair
Sys = (V¢ 8)7

where V is a finite set of Boolean variables (taking values in Fy), and & is a finite set of linear
equations over Fo. Fach equation e € £ is specified by a subset Se CV and has the form

@u:o.

’UGSE

A solution is an assignment o : V — Fo satisfying all equations. A solution is nonzero if it is not
identically zero, i.e., v € V with o(v) = 1.

Definition 7.2 (Arity and occurrence). Let Sys = (V,€).
o The arity of an equation e € £ is |Se|.
o The occurrence of a variable v € V is the number of equations e € £ for which v € Se.

We say Sys has bounded arity if every equation has arity at most some absolute constant. We
say Sys has bounded occurrence if every variable occurs in at most some absolute constant number
of equations.

7.2 Equality gadget

Definition 7.3 (Equality constraint). For variables u,v € V, the equation
udv=0

is called an equality constraint, since it enforces u = v.

We will use equality constraints organized in a tree to copy one root value to many leaves.

Definition 7.4 (Equality tree gadget: EqTree). Let L > 1. Let r be a distinguished variable (the
root), and let yo, ...,yr—1 be designated leaf variables. Choose a rooted binary tree T whose root is
r and whose leaves are exactly yo,...,yr—1. Introduce fresh variables for the internal nodes of T
(if any). For every edge (p,c) (parent p, child c¢) in T, add the equality constraint

p@c=0.
The resulting set of constraints is denoted
EqTree(r; yo, -, yr—1).

Lemma 7.5 (Correctness of EqTree). In any solution of EqTree(r; yo,...,yr—1), every node in
the tree (in particular, each leaf y;) equals r.

Proof. Fach edge constraint p @ ¢ = 0 forces p = ¢. By induction on distance from the root, every
node must equal the root value. O

14

7.3 XOR-sum gadget

Definition 7.6 (XOR-sum tree gadget: XorTree). Let L > 1. Let S be a designated root variable,
and let zg, ..., z1,_1 be designated leaf variables. Choose a rooted binary tree T whose root is S and
whose leaves are exactly zy, . .., zr—1. Introduce fresh variables for the internal nodes of T (if any).
For every internal node s with children v and v, add the equation

sudv=0.

Denote the resulting system by
XorTree(S; 20, ..., 20-1)-

Lemma 7.7 (Subtree XOR invariant for XorTree). Let T be the rooted binary tree underlying
XorTree(S; 2o, ...,21-1). For any node s in T, let Leaves(s) denote the set of leaf variables in the
subtree rooted at s. In any solution o of XorTree,

o(s) = @ o(z).

z€Leaves(s)

In particular,
L—1

o(5) = D ()

=0

<

Proof. Proceed by induction on the height of node s. If s is a leaf z;, then Leaves(s) = {z;} and
the identity is trivial.

If s is an internal node with children u, v, the constraint s G u® v = 0 gives o(s) = o(u) ® o (v).
By the induction hypothesis,

o(u) = @ o(z), o(v) = @ o(z).

z€Leaves(u) 2€Leaves(v)
Since Leaves(s) = Leaves(u)ULeaves(v) (disjoint union), we obtain the desired identity. The special
case s = S yields the root XOR formula. O
7.4 Boundedness properties of the gadgets
Lemma 7.8 (Bounded arity and bounded occurrence of the gadgets). Fiz L > 1.

1. Every equation in EqTree(r; yo,...,yr—1) has arity 2.

2. Every equation in XorTree(S; 2o, ...,25-1) has arity 3 (except for the degenerate case L =1,
where one may omit the gadget and set S = zy).

3. If the rooted tree in EqTree is chosen to have mazimum degree 3 (i.e., a rooted binary tree),
then each variable in the gadget occurs in at most 3 equations.

4. In XorTree, each leaf z; appears in exactly one equation (as a child of its parent), each internal
node appears in exactly two equations (its own defining equation and its parent’s equation),
and the root S appears in exactly one equation. Hence every variable occurrence is at most 2
within the gadget.

15

Proof. (1) and (2) follow directly from the definitions.

For (3), in a rooted binary tree each node has at most one parent edge and at most two child
edges, so each node variable appears in at most 1 + 2 = 3 constraints.

For (4), each internal node s participates in its own defining equation and (unless it is the root)
in its parent’s equation; leaves participate only as children, hence exactly once.]

8 The System SysBit: Construction and Correctness

Fix N > 2, indices i € [N], t € [k], a target bit b € Fo, and an evaluator X. This section defines a
homogeneous Fo-linear system
SysBit(V,i,t,b, X)
that has a nonzero solution if and only if SCEN ; +(X) = b.
Throughout this section, let m;, = mgz’z’t)
let z;, be the evaluator bits from Definition 6.3.

be the mask coefficients from Definition 6.7, and

8.1 Intuition: a “switch” and a forced XOR check

We want to enforce

S = @ @mjijve’

FE[N] Ce[k]

and then check that S = b. Since our system must be homogeneous, we implement the check as
S @ (b Aroot) =0,
where Apgot is a “switch” variable. The switch serves two purposes:
o It makes the system always satisfiable (the all-zero assignment).

o It ensures that nonzero satisfiability corresponds to the intended check: any nonzero solution
must force Aot = 1, and then the check becomes S = b.

8.2 Formal definition of SysBit
Definition 8.1 (The system SysBit(N,i,t,b, X)). Define SysBit(N,i,t,b, X) = (V,&) as follows.

Variables. Include the following designated variables:
e A root switch variable Moot -
« Copy variables \j for each j € [N].
o Copy variables N, for each (j,¢) € [N] x [K].
o Gating variables ujo and zj, for each (j,£) € [N] x [k].
o Aggregation variables w; for each j € [N].
e A final sum variable S.
In addition, include all internal variables introduced by the EqTree and XorTree gadgets instan-

tiated below.

16

Equations. Include the following constraints:

(E1) Copy Aroot to Aj: include
EqTree(Aroot; Aoy - - - s AN—1)-

(E2) Copy Aj to Ajg: for each j € [N], include

EqTree()\j;)\j70, ey Aj,k—l)'

(E3) Gate by evaluator bits xj,: for each (j,0) € [N] x [k], include:

— if x4 =0, the unary equation u;, = 0;

— if xjo =1, the binary equation w;, ® \j o = 0.
(E4) Gate by mask bits mj: for each (j,€) € [N] x [k], include:

— if mj, = 0, the unary equation z;; = 0;

— if mj¢ = 1, the binary equation z;, ® uje = 0.
(E5) Sum within each j: for each j € [N], include

XorTree(w;; 2505« -5 2jk—1)-

(E6) Sum across j: include
XorTree(S; wo, ..., wWN_1)-

(E7) Homogeneous check against b:

— if b =0, include the unary equation S = 0;
— if b=1, include the binary equation S & Apoor = 0.

This completes the definition of SysBit(N,i,t,b, X). (Fach equation is of the form XOR-of-
variables = 0, hence the system is homogeneous, and the all-zero assignment always satisfies all

equations.)

8.3 The switch property

Lemma 8.2 (Switch lemma). If o is a solution of SysBit(N,i,t,b, X) with 0(Awoot) = 0, then o is
the all-zero assignment. In particular, every nonzero solution must satisfy o(Aoot) = 1.

Proof. Assume o (Aroot) = 0.

1. By (E1) and Lemma 7.5, 0(\;) = 0(Aroot) = O for all j € [N], and all internal variables of

this EqTree gadget are 0.

2. Fix any j. By (E2) and Lemma 7.5, 0(\j¢) = o();) = 0 for all £ € [k], and the internal

EqTree variables are 0.

3. Consider (E3). If z;, = 0, then uj, = 0. If ;, = 1, then the constraint u;, ® A;, = 0 forces

uje = Ajp = 0. Thus U(ijf) = 0 for all (], 6)

4. Consider (E4). If m;, = 0, then z;, = 0. If m;, = 1, then z; @ uj, = 0 forces zj, = ujo = 0.

Hence o(z;¢) = 0 for all (34, ¢).

17

5. Now (E5) says each w; is the XOR of the z;, (Lemma 7.7), so o(w;) = 0 for all j, and all
internal XorTree nodes are 0.

6. Finally, (E6) implies S is the XOR of the w;, so ¢(S) = 0, and again internal nodes in this
Xor'Tree are 0.

7. The check (E7) is then satisfied automatically: if b = 0, it requires S = 0; if b = 1, it requires
S @ Moot = 0, which holds since both are 0.

Thus every designated variable is 0, and all gadget-internal variables are 0. Hence o is the all-zero
assignment. The final sentence follows immediately. O

8.4 The forced XOR value when A =1
Lemma 8.3 (Forced sum lemma). Let o be a solution of SysBit(N,i,t,b, X) with 0(Awot) = 1.
Then
oS) = B D (0.
JEIN] Le[k]
Proof. Assume o(Aoot) = 1.
1. By (E1) and Lemma 7.5, o(\;) = 1 for all j. By (E2) and Lemma 7.5, o();) = 1 for all j, .

2. Consider (E3). If z;, = 0, then u;y = 0. If z;, = 1, then u;, ® \j, = 0 forces u;; = 1.
Therefore,
o(uje) = xje.

3. Consider (E4). If m;, = 0, then z;, = 0. If mj, = 1, then z;, ® u;j, = 0 forces zj = uj¢ =
x;¢. Hence,

4. By (E5) and Lemma 7.7, each w; equals the XOR of {2 ¢} sk, 50
a(w;) = P olzj0) = D (mje - zj0).

Le(k] Le(k)
5. By (E6) and Lemma 7.7 again,

o(S)= P o(w))= P P (mje- x50

JE[N] JEN] Le[k]

8.5 Correctness: nonzero solution iff SCE = b

Theorem 8.4 (Correctness of SysBit). SysBit(N,i,t,b, X) has a nonzero solution if and only if
SCEn,i+(X) =b.

Proof. (=) Suppose SysBit(V,i,t,b, X) has a nonzero solution o. By Lemma 8.2, 0(Aroot) = 1.
Then Lemma 8.3 gives
o(S) = P(mjg-j0).
3.
By Lemma 6.8, the right-hand side equals SCEy; ¢(X). Finally, the check (E7) enforces o(S) = b

when Aot = 1:

18

.« ifb=0, (E7)is S = 0;
o ifb=1, (E7)is S ® oot = 0, hence S = Moot = 1.

Thus SCEN7Z‘7t<X) =b.
(<) Suppose SCEy; +(X) = b. We construct a nonzero solution o.

o Set 0(Aoot) = 1, and for each EqTree in (E1)-(E2), set every variable in that tree to 1. All
equality constraints are satisfied.

o For each (j,¢), set o(uje) = xj¢. Then (E3) is satisfied: if x;, = 0 it requires u;, = 0; if
x;¢ = 1 it requires u;jp = A = 1.

o For each (j,), set 0(2;¢) = mj-xje. Then (E4) is satisfied: if m;, = 0 it requires z;, = 0;
if mj o = 1 it requires z;, = u; .

o For each XorTree in (E5) and (E6), assign internal node values bottom-up so that each
internal equation s @ u @ v = 0 holds; equivalently, set each internal node s to o(u) @ o(v).
Then the gadget constraints are satisfied and Lemma 7.7 holds. In particular,

o(wj) = @O’(Zj’g), o(S) = @a(wj) = @mﬂxj,g.
7,

¢ j
By Lemma 6.8, the right-hand side equals SCEy ; +(X) = .
 Finally, (E7) is satisfied because o(S) = b and o(Aroot) = 1.

Thus o is a nonzero solution.]

8.6 Bounded arity and bounded occurrence

Lemma 8.5 (Bounded arity and bounded occurrence of SysBit). All equations in SysBit(N,i,t,b, X)
have arity at most 3. Moreover, there exists an absolute constant B (independent of N,i,t,b, X)
such that every variable in SysBit occurs in at most B equations.

Proof. Arity:
o EqTree constraints (E1)—(E2) are equalities of arity 2.
o XorTree constraints (E5)—(E6) have arity 3.
o The gating equations (E3)—(E4) have arity 1 or 2.
o The final check (E7) has arity 1 or 2.

Thus the maximum arity is 3.
Occurrence: choose all EqTree gadgets as rooted binary trees and all XorTree gadgets as rooted
binary trees. Then:

o Within EqTree, each variable occurs in at most 3 equations (Lemma 7.8).
o Within XorTree, each variable occurs in at most 2 equations (Lemma 7.8).

Now check cross-gadget participation for each class of designated variables:

19

o Each \; participates in one EqTree in (E1) and one EqTree in (E2) and nowhere else.
o Each)\, participates in EqTree (E2) and in at most one gating equation in (E3).
« Each u;, participates in at most one equation in (E3) and at most one equation in (E4).

« Each z;, participates in at most one equation in (E4) and in exactly one XorTree equation
(as a leaf) in (E5).

« Each w; participates in one XorTree (E5) and one XorTree (E6).
» S participates in one XorTree (E6) and one check equation (E7).
o Moot participates in EqTree (E1) and possibly in (E7) if b = 1.

Therefore each variable’s total occurrence is bounded by a fixed constant (one may take B = 8,
for example), independent of the parameters.]

Remark 8.6 (Size vs succinctness). The system SysBit(N,i,t,b, X) contains ©O(Nk) leaf-level vari-
ables and constraints. Later, we will represent such systems succinctly by local access, using the
fact that each gating choice depends on either (i) evaluator bits xj,, obtainable from evaluating
X(j), or (it) mask bits mj e, computable in poly(k) time by Lemma 6.9. This “localizability” will
be essential when translating SysBit into a succinct topological instance.

From Bounded Fs-Linear Systems to CW 2-Complexes and the Isomorphism
HQ = Sol

9 A CW 2-Complex Encoding of a Bounded Linear System

This part constructs, from a bounded-arity, bounded-occurrence homogeneous Fo-linear system
Sys = (V, €), a 2-dimensional CW complex KV(Sys) such that the second cellular homology group
Hy (K (Sys);Fy) is canonically isomorphic to the solution space Sol(Sys).

The construction is designed to have bounded local complexity when Sys has bounded arity and
occurrence, which will later support bounded-degree simplicialization (Part 4/5).

9.1 Conventions for input systems (boundedness and ordering)

Recall from Definition 7.1 that a homogeneous system Sys = (V, &) consists of variables V and
equations &£, where each equation e € £ is of the form

EBU:O

’UESE
for some subset S, C V.

Convention 9.1 (Equation IDs, no duplicates inside a single equation, and incidence ordering).
For the remainder of this part, we impose the following conventions.

1. We treat € as an indexed list of equations, i.e., & = [mg] for some mpg, and we refer to
equations by their IDs e € [mpg]. (If two equations are syntactically identical, they still have
different IDs and are treated as distinct.)

20

2. For each equation e, we treat Se C V as a set (no repeated variable within a single XOR).
This is without loss of generality because repetitions cancel over Fo.

3. For each variable v € V, define its incidence set
Inc(v) :=={e€ & :veS.}.
We fix a canonical ordering of Inc(v) as an ordered list
Inc(v) = (€v,05 €u,15- -3 Evre—1)s Ty = |[Inc(v)|.
For concreteness, we may take the increasing order of IDs.

4. We assume boundedness: each equation has arity |Se| < 3, and each variable occurs in at
most B equations, i.e., 7, < B for all v. (This is the situation for SysBit by Lemma 8.5.)

These conventions are needed to define attaching maps deterministically and to support local
access later.

9.2 Equation triangles in the 1-skeleton

We begin by defining, for each equation e, a distinguished 3-cycle in the 1-skeleton that will serve
as a “basis cycle” corresponding to that equation.

Definition 9.2 (Equation triangle gadget and the 1-cycle A.). For each equation ID e € &,
introduce three new vertices

p(e,0), ple,1), p(e,2),
and three edges
{p(e,0),p(e; 1)}, {p(e,1),p(e,2)}, {p(e,2),p(e,0)}.
These edges form a 3-cycle in the 1-skeleton. We denote the corresponding formal 1-chain over Fa
by
N = {p(e,O),p(e, 1)} @ {p(€> 1),p(6,2)} ® {p(6,2),p(€,0)}.
Importantly, in our construction N, will not be filled by any 2-cell of its own; it remains a 1-cycle
that appears in boundaries of other 2-cells.

9.3 The CW 2-complex K°(Sys)

We now define the CW complex. Intuitively, each variable v contributes a 2-cell F;,. The boundary
of F,, “loops around” A, once for each incident equation e € Inc(v). Over Fy, this will make 0y (F,)
equal to the XOR of those A, and hence the kernel condition d2(,, o(v)F,) = 0 will encode the
satisfaction of every equation.

Definition 9.3 (The CW 2-complex KV (Sys)). Let Sys = (V,E) satisfy Convention 9.1. Define
a 2-dimensional CW complex KV (Sys) as follows.

(i) O-cells (vertices). The vertex set X©) consists of:

o A vertex b(v) for each variable v € V (think “basepoint of v”).
o A vertex u(v,e) for each incidence pair (v,e) with v € Se.

o The equation triangle vertices p(e,0),p(e,1),p(e,2) for each equation ID e € € (from Defini-
tion 9.2).

All these vertices are distinct by construction.

21

(ii) 1-cells (edges). The edge set X1 consists of:

o For each incidence (v,e) with v € Se, two “connector” edges
{b(v), u(v,e)} and {u(v,e),p(e,0)}.
o For each equation e, the three triangle edges of Definition 9.2:

{p(e,0),p(e, 1)}, {ple,1),p(e,2)}, {p(e,2),p(e,0)}.

Thus the 1-skeleton is a graph containing, for each equation e, a triangle AN, and for each
incidence (v, e), a path b(v) —u(v,e) —p(e,0) linking variable v to the vertex p(e,0) of the equation
triangle.

(iii) 2-cells. For each variable v € V, add one 2-cell F,, attached along a closed walk in the
1-skeleton defined by Inc(v).

o IfInc(v) = (ep,0,---,€vr,—1) withr, > 1, define the attaching map of F,, as the concatenation
of the following “lollipop loops,” one for each e = e, ;:

b(v) = u(v,e) — p(e,0) — p(e, 1) — p(e,2) — p(e,0) = u(v,e) = b(v).

Each arrow traverses the unique edge between the two vertices. Concatenating these loops (in
the fized order of Inc(v)) yields a closed walk starting and ending at b(v), hence a well-defined
attaching map St — X,

o Ifr, =0 (ie., v appears in no equations), attach F, along the constant loop at b(v).

This completes the construction of KV (Sys).

9.4 Bounded local complexity

Definition 9.4 (Bounded local complexity for a CW 2-complex). A 2-dimensional CW complex
X has bounded local complexity if there exists an absolute constant A such that:

1. Every vertex in the 1-skeleton has degree at most A.
2. Every 2-cell is attached along a walk of length at most A.
3. FEvery 1-cell is incident to at most A distinct 2-cells.

Lemma 9.5 (Bounded local complexity from bounded arity/occurrence). Assume Sys has equation
arity |Se| < 3 for all e and variable occurrence r, < B for all v. Then KV (Sys) has bounded local
complexity with a bound A = A(B) depending only on B.

Proof. 1. Vertex degrees. Consider each vertex type:
o b(v) is adjacent only to vertices u(v, e) for e € Inc(v). Thus
deg(b(v)) =r, < B.
o u(v,e) is adjacent to exactly b(v) and p(e,0), so deg(u(v,e)) = 2.

o p(e,1) and p(e,2) lie only on the equation triangle, so each has degree 2.

22

o p(e,0) is adjacent to p(e, 1) and p(e, 2), and also to u(v,e) for each v € S.. Hence
deg(p(e,0)) <2+ |Se| < 5.

Therefore deg(-) is bounded by max{B,5}.
2. Boundary length of F,,. Each lollipop loop for an incidence (v, e) traverses exactly:

2 connector edges b(v)—u(v,e) and u(v,e)—p(e,0) forward,
e 3 triangle edges around A,
e the same 2 connector edges backward,

for a total of 7 edge traversals. The attaching walk of F, is the concatenation of r, such
loops, so its length is 7r, < 7B. If r, = 0, the length is 0. Hence bounded by 7B5.

3. Number of 2-cells incident to a 1-cell.
o A connector edge {b(v),u(v,e)} appears only in the boundary walk of F,, hence is

incident to exactly one 2-cell.

o A connector edge {u(v,e),p(e,0)} also appears only in the boundary of F),, hence is
incident to exactly one 2-cell.

o A triangle edge {p(e, a), p(e,a’)} for fixed e appears in the lollipop loop of F, if and only
if v € S.. Hence it is incident to exactly |S.| < 3 distinct 2-cells.

Thus each 1-cell is incident to at most 3 2-cells.
Combining (1)—(3) gives bounded local complexity with A = max{B,7B,3,5} = 7B (for exam-
ple). O

10 Cellular Chains and the Isomorphism H; = Sol

We now define the cellular chain complex of K“V(Sys) over Fy, compute the boundaries of the
variable 2-cells, and prove that H» is naturally isomorphic to the solution space of Sys.

10.1 Cellular chain groups and boundary map over [F,

Let X = KV(Sys). Since X has cells only in dimensions 0,1,2, its cellular chain complex over [y is
0 — Co(X) 2 C1(X) 2 Cp(X) — 0.
Definition 10.1 (Cellular chain groups for KV (Sys)). Let
o F:={F,:v €V} be the set of 2-cells,
o XU be the set of 1-cells (edges) from Definition 9.3,
o XO) be the set of 0-cells (vertices) from Definition 9.3.
Define
Co(X)=F], Cu(X)=F", CoyX):=Ff".

23

Definition 10.2 (Cellular boundary map 0 over Fy). For each 2-cell F,, its attaching map is a
closed walk in the 1-skeleton specified as an edge sequence (Definition 9.3). Define 05(F,) € C1(X)
to be the XOR (sum in F3) of all 1-cells traversed an odd number of times by that walk (direction
ignored, since coefficients are mod 2). Extend 0y Fa-linearly to all of Cy(X).

Remark 10.3. Over Fa, this definition matches the standard cellular boundary definition via in-
cidence numbers mod 2; the combinatorial closed-walk description is sufficient for our purposes.

Since there are no 3-cells, C3(X) = 0 and im(93) = {0}. Therefore
HQ(X; Fg) =5 ker(é?g).

We will use this fact in the main theorem below.

10.2 Boundary of a variable 2-cell
Lemma 10.4 (Boundary of F,). For each variable v € V,

82(FU) = @ Ae ECl(X),

e€Inc(v)
where N, is the equation 1-cycle from Definition 9.2.

Proof. Fix v. If Inc(v) = @, then F, is attached along the constant loop at b(v), hence no edges
are traversed and 0(F,) = 0, matching the empty XOR.

Assume Inc(v) # @. By Definition 9.3, the attaching walk of F), is a concatenation of “lollipop
loops,” one for each e € Inc(v). It suffices to compute the contribution of one such loop.

Fix e € Inc(v). The lollipop loop traverses edges in the sequence:

{b(v),u(v,e)}, {u(v,e),p(e,0)}, {p(e,0),p(e,1)}, {p(e,1),p(e,2)}, {p(e,2),p(e,0)},

and then returns via
{p(e,0), u(v,e)}, {u(v,e),b(v)}.

Thus each connector edge {b(v),u(v,e)} is traversed exactly twice (forward and backward), and
each connector edge {u(v,e),p(e,0)} is traversed exactly twice. Over Fo, these cancel in 02(Fy).
Each triangle edge {p(e,0),p(e, 1)}, {p(e,1),p(e,2)}, {p(e,2),p(e,0)} is traversed exactly once
in that loop, so all three appear in 02(F},). Therefore the contribution of the lollipop loop for e is
exactly Ae.
Finally, since the full attaching walk is a concatenation of these lollipop loops for all e € Inc(v),
and since 0y is computed by parity of traversals, we obtain

h(F)= @ A

e€Inc(v)

10.3 The variable-to-2-chain map

We now relate assignments o : V — Fy to 2-chains.

24

Definition 10.5 (Solution space). The solution space of Sys = (V, &) is

Sol(Sys) := {a VYV = Fa: Veel, @ o(v) = O} .

’UES&
Definition 10.6 (Variable-to-2-chain map ®). Define a linear map
D:FY = Cy(X) by P(o):= EBJ(U) F,,
veVY
where we identify o with its coordinate vector in FY , and {F,} is the canonical basis of Co(X) = F7 .

Lemma 10.7 (Boundary of ®(o)). For every o :V — Fo,

92(®(0)) = P (@ a(v)) A..

ecE \veS.

Proof. Using linearity of 05 and Lemma 10.4,

Do (P(0)) = @J(v) R (Fy) = @ o(v) (@ Ae) :

veY veEV e€Inc(v)

Rearranging the XOR by grouping terms for each fixed equation e, note that A, appears in 02(F)
if and only if e € Inc(v), i.e., if and only if v € S.. Therefore, for a fixed e, the total coefficient of
A is exactly @,cg, o(v). This yields the claimed formula. O

10.4 Independence of equation triangles

To conclude that 02(® (o)) = 0 forces each equation constraint, we need a linear independence fact.

Lemma 10.8 (Linear independence of {A.}ece in C1(X)). The set of 1-chains {A. : e € £} C
C1(X) is linearly independent over Fy.

Proof. Consider any linear combination

@CGAQZO in Cl(X), ce € .
ecf

Fix an equation ID eg € £. The edge {p(eo,0),p(eo, 1)} appears in A\, and does not appear in A,
for any e # eg, because all equation triangle vertices and triangle edges are distinct across different
equation IDs by construction (Definition 9.2 and Definition 9.3).

Thus, in the sum @, c.A., the coefficient (parity) of the specific edge {p(eg,0),p(eo,1)} is
exactly ce,. Since the total sum is the zero 1-chain, this coefficient must be 0. Therefore c., = 0.
As ep was arbitrary, all coefficients ¢, are 0, proving independence.]

10.5 Main theorem: Hy(K°V(Sys);[Fy) = Sol(Sys)

Theorem 10.9 (Second homology equals solution space). Let Sys = (V, E) satisfy Convention 9.1
and let X = K°V(Sys). Then
Hy(X;Fy) = Sol(Sys)

as Fy-vector spaces. More precisely, the map ® from Definition 10.6 restricts to a linear isomor-
phism
D Sol(Sys) i) ker(ﬁg) = HQ(X;FQ).

25

Proof. Since X is 2-dimensional, C3(X) = 0, hence im(d3) = {0}, and therefore
HQ(X; Fg) = ker(82>.
We prove that @ gives a linear bijection between Sol(Sys) and ker(92).

L. (®(Sol) C ker 02). Let o € Sol(Sys). Then for every equation e, @, g, 0(v) = 0. By Lemma
10.7,

D (P(0)) = @ (@ O'(U)) Ne = EBO AN = 0.

ecf \vES. ecf
Thus ®(0) € ker(02).

2. (ker 9y C ®(Sol)). Let ¢ € ker(d2). Since Ca(X) = F§ with basis {F,},ey, there is a unique
coefficient vector o : V — Fy such that

c= @0(1})5’1, = ®(0).
vey
Since ¢ € ker(0ds), we have 05(®(0)) = 0. By Lemma 10.7,

0=0x(®(0)) = EB (@ O'(U)) Ae.

ecf \vES.
By Lemma 10.8, the A, are linearly independent in C;(X), so each coefficient must be 0:
Ve € &, @a(v):().
UESE
Hence o € Sol(Sys) and ¢ = ®(o) € ®(Sol(Sys)).
3. Injectivity of ® on Sol. If (o) = 0 in Co(X), then all coefficients of the basis elements F,
are zero, so o(v) = 0 for all v. Thus ® is injective.
Combining (1)—(3), ® is a linear isomorphism Sol(Sys) = ker(d2) = Ha(X;F2). O
Corollary 10.10 (Betti-2 positivity equals existence of a nonzero solution). Let X = KV(Sys).

Then
B2(X;F2) >0 <= Sys has a nonzero solution.

Proof. By Theorem 10.9, 82(X;Fy) = dim Hy(X;F3) = dim Sol(Sys). This dimension is positive if
and only if the solution space contains some nonzero vector, i.e., Sys has a nonzero solution. O

10.6 Application to SysBit and SCE-Dec (CW level)
We combine the correctness of SysBit from Part 2 with the topological encoding above.

Corollary 10.11 (CW encoding of the SCE-Dec bit). Fizx parameters (N,i,t,b, X) and let Sys =
SysBit(N,i,t,b, X). Let
X?V‘?i,t,b,X = KCW(SySBIt(N7 ia ta b7 X))
Then
Ba (XK 0,xF2) >0 <= SCEn;¢(X) =b.

Proof. By Theorem 8.4 (Part 2), SysBit(N, 7,t, b, X') has a nonzero solution if and only if SCEn ; +(X) =
b. By Corollary 10.10, B2(K“V(SysBit); F2) > 0 if and only if SysBit has a nonzero solution. Com-
bining yields the equivalence. O

26

Simplicialization, the ProbeBit Mapping, ©P-Completeness on Im(ProbeBit),
SAT <,, via Isolation, and an Evaluation-Local Lower Bound

11 From K°(Sys) to a Bounded-Degree Simplicial 2-Complex

11.1 Why the simplicialization must respect boundary occurrences

In Part 3 we constructed, from a bounded-arity /occurrence homogeneous system Sys = (V,€), a
CW 2-complex
X = K(Sys)

with one 2-cell F), per variable v € V. The proof of Theorem 10.9 depended critically on the fact
that each variable contributes a single 2-cell, so that the only 2-chains are Fa-linear combinations
of these F,.

A naive “cone from a center vertex” simplicialization that identifies repeated boundary ver-
tices would generally introduce extra 2-chains that can “select subsets of incident equation-cycles,”
potentially enlarging Hs and breaking the isomorphism Hy = Sol(Sys). To avoid this, we must
triangulate each 2-cell F, using distinct boundary vertices per boundary occurrence before gluing
to the 1-skeleton. The resulting structure is a triangular CW complex (a A-complex in the classical
sense), and we then apply a barycentric subdivision to obtain an honest simplicial complex.

This section formalizes that two-step process and proves that it preserves geometric realization
(hence homology).

11.2 The boundary walk for each CW 2-cell

Let X = K¥(Sys) be as in Definition 9.3. Let G := X1 denote its 1-skeleton (a finite graph).
For each v € V, the attaching map of the CW 2-cell F, is, by construction (Definition 9.3), a
closed walk in G. We fix a concrete encoding of that walk as a vertex sequence.

Definition 11.1 (Boundary walk encoding W,). For each v € V, let

W, = (wév),wgv),...,w(;)

v

be the vertex sequence of the attaching walk of F,, with
wl = {w(v) w” } € E(G) forall j€{0 L,—1}
L, — %0 » A ES | J gyl .
(Thus L, is the number of edge-steps in the closed walk.)

Remark 11.2 (Boundedness). If Sys has variable occurrence 1, := |Inc(v)| < B, then in our CW
encoding (Definition 9.3) the boundary walk is a concatenation of v, “lollipop loops” each of length
7, so

L, <7B.

This bound will be used later to prove bounded degree after subdivision.

11.3 Triangulating each 2-cell as a disk with distinct boundary occurrences

We now define a triangulated disk that has a boundary cycle of length L,, with distinct boundary
vertices q(()v), ey q(va)fl. These are “formal boundary corners” and are not the vertices wj(-v) in the

1-skeleton.

27

Definition 11.3 (The fan triangulation T, of a polygonal disk). Fiz v € V with boundary length
L, > 1. Define a simplicial 2-complex T, as follows.

o Vertices:
V(T,) = {e} U {g}"”] € [L]},

where all vertices are distinct and c, is a designated “center.”

e Edges: include all boundary edges {qj(v),qj(»i)l} for j € [Ly] (indices mod L,), and all cone
edges {c,,q\"'} for j € L.

o Triangles: for each j € [L,], include the triangle

)

0

= {C’m q](v ’ q](ﬁr)l}

This is the standard fan triangulation of an L,-gon from a center vertex.

Lemma 11.4 (|T,]| is a topological disk). The geometric realization |T,| is homeomorphic to the

closed disk D?, and the subcomplex induced by {qj(»v)}je[Lv] realizes as a simple cycle homeomorphic
to ST.

Proof. Choose a strictly convex polygon P C R? with vertices py,...,pr,_1 in cyclic order, and
choose a point p, in the interior of P. Define a simplicial map f : |T;,| — P by sending

(v) ,
Cy 7 Py q; " — Py

and extending linearly on each triangle T}v). Because P is strictly convex and p, is interior, the

(v)

images of the triangles 7;°" are non-overlapping (except along shared edges) and cover P. Thus
f is a continuous bijection from compact |T,| onto Hausdorff P, hence a homeomorphism. Since
P = D? and its boundary P 22 S, the claim follows. O

11.4 Gluing triangulated disks to the 1-skeleton: a triangular CW complex

We now glue each disk |T,| to the 1-skeleton G along the boundary walk W,. The key is that the
boundary vertices qj(.v) are distinct in T, but are mapped to the possibly repeating vertices wj(-v) in

G.

Definition 11.5 (Boundary identification map ~,). Define a continuous map
Y i 0T, — |G|

to the vertex wj(-v) € V(G), and mapping each boundary edge

{qj(»v), qj(»qu)l} homeomorphically onto the edge {wj(»v), wj(?jr)l} € E(G) (which exists by Definition|11.1]).
This defines v, uniquely on |0T,| because |0T,| is a cycle subdivided into edges.

(v)

by mapping each boundary vertex qjv

Definition 11.6 (Triangular subdivision complex K (Sys)). Define the space
Y = K®(Sys)
as the pushout (quotient space)

Y = (\GI u || \Tvl>/~,

veEY

where for each v, and for each x € |0T,|, we identify x ~ v,(z) € |G|. Equivalently, Y is obtained
from |G| by attaching the disk |T,| along its boundary via ~,, for each variable v.

28

Remark 11.7 (What Y is and is not). e Y is a finite 2-dimensional CW complex whose 2-

cells are triangles TJ(U).

e Y may have multiple 1-cells with the same endpoints, and may have multiple 2-cells whose
vertex sets coincide after boundary identifications. Therefore Y is generally not a simplicial
complex in the strict sense of Definition 2.5.

o This is why we apply barycentric subdivision (Section to obtain an honest simplicial
complex without losing topology.

11.5 K*(Sys) is homeomorphic to K (Sys)

We now show that replacing each CW disk F;, by the triangulated disk 7, does not change the
space.
Let X := K(Sys) be the CW complex from Part 3. By definition, X is also a pushout

i = (1610 o)/~

veY

where each D, = D? is a copy of the disk attached along its boundary by the attaching map
fo: S — |G| determined by W,.

Lemma 11.8 (Boundary-fixing homeomorphism between |T,| and D?). For each v € V, there
exists a homeomorphism
hy: |Ty| — D,

such that h, restricts to a homeomorphism |0T,| — 0D,.

Proof. By Lemma |T,| = D?. Choose any homeomorphism h, from |T,| onto the specific
disk copy D,; by composing with a boundary homeomorphism of D, if needed, we may ensure
hy(|0Ty|) = OD,,. O

Lemma 11.9 (Homeomorphism of pushouts under boundary-fixing maps). Let A be a compact
Hausdorff space, and let {B;}icr be compact Hausdorff spaces with closed subspaces C; C B;. Sup-
pose we are given continuous gluing maps ¢; : C; — A. Suppose further that for each i there is a
homeomorphism h; : B; — B, to another compact Hausdorff space B} that maps C; homeomorphi-
cally onto a closed subspace C! C B!. Define ¢ : C! — A by ¢l := ¢; 0 (hi|c,) L. Then the resulting
pushout quotients

Z = (Au|_|Bi>/~ and 7' := (Au|_|B;.>/~’

are homeomorphic.

Proof. Define amap H : AU||; B; — AU||; Bl by H|4 = id4 and H|p, = h;. This is a continuous
bijection between compact Hausdorff spaces, hence a homeomorphism. Moreover, by construction
H respects the equivalence relations ~ and ~’ on the respective disjoint unions (the identifications
are matched on the glued boundaries). Therefore H descends to a continuous bijection H : Z — Z'.
Since Z and Z' are compact Hausdorff quotients of compact Hausdorff spaces, H is a homeomor-
phism.]

29

Theorem 11.10 (Triangular subdivision preserves the space). Let Sys satisfy Convention 9.1, and
let
X = K(Sys), Y = K*(Sys).

Then | X| and |Y| are homeomorphic. Consequently,
Hy(X;Fy) = Hy(Y;Fe) forallg.

Proof. Apply Lemma with A = |G|, and B, = D, (CW disks) versus B = |T,| (triangu-
lated disks), using the boundary maps induced by the boundary walks W,. Lemma supplies
the needed homeomorphisms between disks. Thus the pushouts are homeomorphic. Homology
invariance under homeomorphism gives the isomorphisms.]

11.6 Barycentric subdivision to obtain an honest simplicial 2-complex

We now define a simplicial complex whose geometric realization is homeomorphic to |Y|. Since YV
is a triangular CW complex, we can barycentrically subdivide each triangular 2-cell and each 1-cell
to obtain a genuine simplicial complex.

Definition 11.11 (Barycentric subdivision sd(Y) in dimension 2). Let Y be a triangular CW
complex (all 2-cells are triangles). Define a simplicial 2-complex sd(Y') as follows:

o Vertices: vertices of sd(Y') correspond to cells of Y of dimensions 0,1,2. For each cell o of
Y, denote its barycentric vertex by bary(o).

o Edges: include an edge {bary(c), bary(7)} whenever o is a face of T and dim(7) = dim(o)+1.

o Triangles: include a triangle {bary(u), bary(e), bary(t)} whenever u C e C t is a chain of
incident cells in' Y with dim(u) = 0, dim(e) = 1, dim(¢) = 2.

This yields a simplicial 2-complezx by construction (simplices are indexed by strict chains of cells).

Lemma 11.12 (Barycentric subdivision preserves geometric realization).
[sd(Y)| = |Y].

Proof. Tt suffices to define a homeomorphism on each triangular 2-cell and check compatibility on
shared faces.

Fix a triangular 2-cell ¢ of Y with vertices wug,u1,us and edges ep1, €12, e29. The barycentric
subdivision sd(t) consists of 6 small triangles, each with vertex set {bary(u;), bary(e;;), bary(t)}.
There is a standard piecewise-linear homeomorphism from [sd(¢)| onto |¢| obtained by sending the
barycentric vertices to the geometric barycenters of the corresponding cells (in any fixed geometric
realization of ¢ as a Euclidean triangle) and extending linearly over each small triangle. This map
is a homeomorphism because it is a bijective PL. map between compact polyhedra.

When two triangles ¢t and ¢’ in Y share a common edge, the barycentric subdivision is de-
fined using the same barycentric vertices of that shared edge and its endpoints, so the two PL
maps agree on the shared subdivided edge. Therefore the local homeomorphisms glue to a global
homeomorphism [sd(Y)| — |Y|. O

Definition 11.13 (Final simplicial complex K (Sys)). Define
K(Sys) = sd(K*(Sys)).

By Lemma |K(Sys)| = |[K*(Sys)|, and by Theorem | K2 (Sys)| = |KV(Sys)|. There-
fore |K(Sys)| = [K (Sys)|.

30

11.7 Homology consequences and Betti-2 positivity
Corollary 11.14 (Homology preservation from CW to simplicial). For all g,

Hy(K(Sys);Fa) = Hq(K™(Sys);[F2).
In particular,
Hy(K(Sys);Fo) = Sol(Sys) and [a2(K(Sys);Fa) >0 <= Sys has a nonzero solution.

Proof. By Theorem[11.10/and Lemma [11.12} |K (Sys)| = |[K“V(Sys)|. Homology over Fs is invariant
under homeomorphism, so H, isomorphic for all ¢. The identification of Hy with Sol(Sys) then
follows from Theorem 10.9. The Betti-2 positivity statement follows from Corollary 10.10. O

11.8 Bounded degree of K (Sys)

Lemma 11.15 (Bounded degree). Assume Sys has arity < 3 and variable occurrence < B. Then
there exists a constant A" = A'(B) such that the simplicial 2-complex K (Sys) is A’'-bounded-degree
(in the sense of Definition 2.9).

Proof. By Lemma 9.5, the CW complex K¥(Sys) has bounded local complexity with bound de-
pending only on B. The triangular subdivision K% (Sys) replaces each 2-cell by a disk triangulation
with L, < 7B triangles; thus it also has bounded local complexity: each vertex is incident to only
constantly many edges and triangles, and each edge is incident to only constantly many triangles
(because equation edges have arity < 3, and boundary/cone edges are local to a single variable
disk).

In a barycentric subdivision of a triangular complex, vertices come in three types (barycenters
of 0-, 1-, 2-cells). Each such barycentric vertex is adjacent only to barycenters of incident cells of
neighboring dimensions:

o A 2-cell barycenter has degree exactly 3 (adjacent to its three edge barycenters).

o A 1-cell barycenter is adjacent to its two endpoint vertex barycenters and to the barycenters
of triangles incident to that edge; the latter number is bounded by local complexity.

e A O-cell barycenter is adjacent to barycenters of incident edges; again bounded by local
complexity.

Thus the graph degree in the 1-skeleton of K (Sys) is bounded by a constant depending only on B.
Since K (Sys) is a simplicial 2-complex, bounded vertex degree implies bounded incidence to edges
and triangles (each triangle contributes at most two edges incident to a given vertex). Therefore
K (Sys) is A’-bounded-degree for some A’(B). O

12 ProbeBit: A Succinct Bounded-Degree Simplicial Complex
Encoding an SCE Bit

We now apply Section 11 to the specific bounded system SysBit(N,i,t,b, X) defined in Part 2.

31

12.1 Definition of ProbeBit
Definition 12.1 (ProbeBit mapping). Given an SCE-Dec instance (N,i,t,b, X), define:

1. Sys := SysBit(N,i,t,b, X) (Definition 8.1).
2. K := K(Sys) (Definition , a bounded-degree simplicial 2-complex.

Define ProbeBit(N,i,t,b, X) to be a local-oracle description D (Definition 2.10) of K.

We impose the additional convention that the encoding of D includes the tuple (N,i,t,b) and a
canonical encoding of the circuit X as explicit header data, so that a promise verifier can recover
(N,i, t,b,X) from D in time poly(|D|).

12.2 Correctness of ProbeBit
Theorem 12.2 (ProbeBit correctness). Let (N,i,t,b,X) be any SCE-Dec instance and let
D := ProbeBit(N,i,t,b, X).

Then
52(KD;F2) >0 <= SCEN,Z',t(X) =b.

Proof. By Theorem 8.4, SysBit(N,,t,b, X) has a nonzero solution iff SCEy ; +(X) = b. By Corol-
lary [11.14] applied to Sys = SysBit, we have

B2 (K (SysBit(N,i,t,b,X));Fa) > 0 <= SysBit(V,1,t,b, X) has a nonzero solution.
By Definition Kp = K(SysBit(V,i,t,b, X)). Combining these equivalences yields the claim.
O

12.3 Succinctness and efficient local-oracle access

We record the (promise) succinctness needed for complexity statements. This section is intentionally
explicit at the level of what must be computable; the full bit-level encoding convention is deferred
to Appendix C (as already announced in Part 1).

Lemma 12.3 (Efficient local-oracle evaluation for ProbeBit outputs). There exists a choice of
indexing conventions for the vertices/edges/triangles of K(SysBit(N,i,t,b, X)) such that:

1. The description size |D| is polynomial in | X |+ log N.
2. Fach oracle Endp, Vertp, IncEp,IncTp can be evaluated in time poly(|X|+ log N).
3. The complex Kp is A'-bounded-degree for a constant A" independent of (N,i,t,b, X).
Proof (construction sketch; finite casework). We outline a uniform indexing that depends only on:
o the syntactic gadget structure of SysBit (EqTrees, XorTrees, and gating equations), and

e the bounded occurrence B from Lemma 8.5.

Step 1: Index SysBit variables and equations. SysBit is generated by a fixed finite collection
of gadget templates (Definitions 7.4 and 7.6 and Definition 8.1). Each template produces:

32

e a bounded-degree graph structure for EqTree or XorTree internal nodes, and

« constant-arity equations whose endpoints/children can be computed from local indices.
We assign IDs to variables and equations by concatenating:

 a “kind tag” (which gadget and role: e.g., Aroot, Aj, internal EqTree node, etc.), and

o the natural indices (j,¢) € [N] x [k] where applicable, encoded in binary.

Because the gadget shapes are fixed (binary trees with canonical heap indices, for example), from
a variable ID one can compute its incident equation IDs in constant time (and conversely from an
equation ID one can compute its variable list of size < 3). This yields local access to Inc(v) with
|Inc(v)| < B.

Step 2: Build the CW complex K (SysBit) locally. Given an equation ID e, the CW
construction introduces the three equation vertices p(e,0),p(e, 1), p(e,2). Given a variable ID v, it
introduces b(v). Given an incidence (v,e), it introduces u(v,e). All these are computable locally
from the IDs.

Step 3: Build the triangular subdivision K (SysBit) locally. For each variable v, the
boundary walk W, is obtained by iterating over the constant-size incidence list Inc(v) and emitting
the constant-length lollipop pattern from Definition 9.3. Therefore L, < 7B and each step j —
(w§v), w](~1jr)1) is computable in constant time from v and j.

Each triangle 2-cell T](v) is determined by (v, 7), and each cone edge 1-cell is determined by the
boundary-vertex occurrence (v,j) (these are distinct 1-cells even when endpoints coincide in the
quotient; this is exactly why we use triangular CW + barycentric subdivision).

Step 4: Index the simplicial complex K (SysBit) = sd(K*). Vertices of K (SysBit) correspond
to cells of K of dimensions 0, 1,2, hence can be indexed by tuples (d,id) where d € {0, 1,2} and
id is a cell ID from the previous steps.

Edges correspond to incidences between 0- and 1-cells or between 1- and 2-cells; triangles
correspond to chains 0 C 1 C 2. Since the local incidence degrees in K2 are bounded by constants
depending only on B, the barycentric complex has bounded degree as in Lemma [11.15

All oracle outputs reduce to:

e decoding a cell ID,

o computing a constant-size list of incident lower-/higher-dimensional cells, and
» translating these to barycentric vertices.

Each such operation is poly(log N + | X|) because:

o evaluating X (j) is poly(|X |+ log N),

e computing mask bits mﬁ[’i’t) is poly(log N) time by Lemma 6.9, and

o all additional computations are fixed finite arithmetic and pointer arithmetic on O(log N)-bit
indices.

Finally, the description size is polynomial in | X |+log N because the oracles are uniform circuits
that hardwire only (N,i,t,b) and the encoding of X, plus fixed gadget logic. This completes the
succinctness argument.]

33

Remark 12.4 (Scope note (no hidden claim)). Lemma is a “construction sketch with finite
casework.” It is logically sufficient for the complexity reductions below, because it specifies what must
be computable and why each oracle evaluation is polynomial time in the description length. A fully
enumerated bit-level encoding is deferred to Appendiz C to avoid distracting from the homological
spine.

13 @®P-Completeness of 1l on Im(ProbeBit)

Let
Iprobe = Im(ProbeBit)

be the promise family of local-oracle descriptions produced by ProbeBit.

13.1 Membership: SCE-Dec € &P
Lemma 13.1 (SCE-Dec € ®P). SCE-Dec (Definition 3.5) lies in ©P.

Proof. Fix input (N,i,t,b, X). By Lemma 6.8,

SCEn+(X) = @ @ my™) - aj),
je[N] tefk]

where x; ¢ is the (-th output bit of X (j), and m; is computable in poly(log N) time by Lemma 6.9.
Define a nondeterministic polynomial-time machine M that:

1. Nondeterministically guesses an integer u € {0,...,2" — 1} where r := [logy(Nk)].
2. If u > Nk, reject.
3. Otherwise decode u +— (j,¢) € [N] x [k].

4. Compute z;, by evaluating X (j) and extracting bit £.

5. Compute mg-y’i’t) by Lemma 6.9.
6. Accept iff mjp- ;0 = 1.

Then #accpr(N,i,t, X) mod 2 equals the XOR of all terms m; ¢z ¢, hence equals SCEn ; +(X).
To decide equality to b with parity acceptance:

e If b= 1, accept iff parity is 1, i.e., use M as is.

e If b = 0, flip parity by adding one additional always-accepting branch; then parity equals
SCEN7Z'7t(X) D 1, which is 1 iff SCENJ‘,t(X) = 0.

Thus (N, ,t,b, X) € SCE-Dec iff the accepting-path count is odd, proving membership in ®P. [

34

13.2 Hardness: ®SAT <,, SCE-Dec

Lemma 13.2 (GSAT <,, SCE-Dec). There exists a deterministic polynomial-time many-one re-
duction from @SAT to SCE-Dec.

Proof. Let ¢(yo,...,yn—1) be an input Boolean formula. Set
N :=2", k := [logy(4N)], K := Fo,

and choose any i € [N] and t € [k] (for concreteness i = 0,t = 0).

We define an evaluator circuit X such that SCEx;(X) equals the parity of satisfying assign-
ments of ¢.

On input j € [N] ={0,...,2" — 1}, the circuit X does:

1. Interpret j as a Boolean assignment y € {0,1}" via binary expansion.
2. Compute s := ¢(y) € {0,1}.

3. Compute the Cauchy coefficient x;; := (Cn)i; = (a;i — bj)*1 € K, which is well-defined and
nonzero by Lemma 6.2. Compute £,]-1 in time poly(k).

4. Output the field element
T = s-m;jl-at e K,
encoded in the fixed basis B. (If s = 0, output 0; if s = 1, output n;jlat.)

Now compute:

(Cna(X))i= > Kijz;
JEN]

J— P . -1t
= 3 g (o)

JEIN]

=Y s-a

JE[N]

(@)
JEIN]

Applying 7 (Definition 2.2), and noting that m(a!) = 1 and 7;(0) = 0, we obtain

Since char(K) = 2, this sum equals

SCEN,i+(X) = €D s = #SAT(¢) mod 2.

JE[N]

Therefore, @SAT reduces to deciding whether SCEy; +(X) = 1. Output the instance (N, 4,t,1, X).
This mapping is computable in polynomial time in |¢| because:

o N = 2" is represented in binary using O(n) bits,

o X can evaluate ¢, compute k; ; and its inverse using poly(k) = poly(n) field arithmetic, and
output k£ = O(n) bits.

Thus we have a deterministic many-one reduction @SAT <,,, SCE-Dec. O

35

13.3 @P-completeness of 115, on Im(ProbeBit)

Theorem 13.3 (®P-completeness on the ProbeBit promise family). Ilg, [7p,.,.. s ®P-complete
under deterministic many-one reductions.

Proof. Hardness. By the standard fact that ©SAT is @P-complete (citation placeholder), it
suffices to reduce ®SAT to Ilg, [7;,.,.-
By Lemmall13.2) ®SAT <,,, SCE-Dec. By Theorem|12.2 for any SCE-Dec instance (N, i,t,b, X),

(N,i,t,b,X) € SCE-Dec <= I, (ProbeBit(N,i,t,b, X)) = 1.

Therefore ®SAT <, I, [75,04.-

Membership. On inputs promised to lie in Zp,obe, the input D contains (N, i,t,b, X) as header
data (Definition [12.1)). By Lemma SCE-Dec € @P, hence there is a parity-NP machine
deciding whether SCEy ; +(X) = b. By Theorem this equals Ilg, (D). Therefore Ilg, [7,,,.. €
oP.

Combining hardness and membership yields &P-completeness. O

Remark 13.4 (Scope note (promise)). The theorem is restricted to the promise family Tprobe =
Im(ProbeBit). No claim is made about ®P-completeness on arbitrary local-oracle inputs.

14 A One-Sided Randomized SAT Reduction on Im(ProbeBit)

14.1 Isolation lemma (standard external result)

Lemma 14.1 (Valiant—Vazirani isolation lemma — standard). There exists a randomized polynomial-
time procedure I that, given a Boolean formula ¢, outputs formulas 11, ...,y for m = poly(|¢|)
such that:

1. If ¢ is unsatisfiable, then every 1, is unsatisfiable.

2. If ¢ is satisfiable, then with probability at least 1/poly(|@|), at least one 1, has exactly one
satisfying assignment.

Status: treated as standard; citation placeholder (Valiant—Vazirani, 1986).

14.2 SAT <,, I, on Im(ProbeBit)
Recall our definition of a one-sided randomized many-one reduction A <,, B from Definition 2.16.

Theorem 14.2 (One-sided randomized many-one reduction SAT <,, g, [7;,.,.). There exists a
one-sided randomized many-one reduction

SAT Srp HﬁQ INIProbe °
Consequently, if Ilg, on Ipyone were solvable in deterministic polynomial time, then NP C RP.

Proof. Given input formula ¢, run the isolation procedure (Lemma [14.1]) to obtain v, ..., %, with

m = poly(|¢]).
For each .., apply the deterministic reduction from Lemma to build an SCE-Dec instance

(Ny,i,t,1, X,) such that
SCEn, i4(X,) =1 <= #SAT(,) =1 (mod 2).

36

If 9, has exactly one satisfying assignment, then #SAT(¢,) =1 (mod 2), hence the SCE bit equals
1, and by Theorem

B2 (KProbeBit(Nr,i,t,LXr)) > 0.

To make a many-one reduction (single output instance), define D to be a local-oracle description
of the disjoint union

m
K = |_| K., Ky = KprobeBit(Ny ,i,t,1,X,)-
r=1

(Disjoint union preserves bounded degree and admits a local-oracle description by adding a com-
ponent selector in the vertex/edge/triangle IDs; this is routine and does not affect any homology
statements.)

Since homology over Fy is additive over disjoint unions,

m

Bo(K;Fa) = Ba(Ky F),

r=1
hence B2(K) > 0 iff there exists r with 83(K,) > 0. Therefore:

o If ¢ is unsatisfiable, then each v, is unsatisfiable, so each K, has f2(K;) = 0, hence S3(K) = 0.
The reduction outputs a NO-instance with probability 1 (one-sided).

o If ¢ is satisfiable, then with probability at least 1/poly(|¢|), some 1, has exactly one satisfying
assignment, hence the corresponding K, has §2(K,) > 0, so B2(K) > 0. Thus the reduction
outputs a YES-instance with probability at least 1/poly(|¢|).

This is exactly a one-sided randomized many-one reduction SAT <, Ilg, | 0

Zprobe*

Remark 14.3 (Scope note (promise)). This reduction targets I1g, only on the promise family Tprope
(and disjoint unions thereof, which remain within a straightforward promise closure of the family).

15 An Unconditional Evaluation-Local Lower Bound for SCE

We now formalize the oracle model and prove an information-theoretic lower bound. This is un-
conditional (no complexity assumptions).

15.1 Model: evaluation-local algorithms

Definition 15.1 (Evaluation-local algorithm). Fiz parameters (N,i,t). An algorithm A is evaluation-
local if it receives as input (N,i,t) and oracle access to an evaluator X : [N] — {0,1}*, and it
may query the oracle on indices j € [N] to obtain X (j). It must output a bit intended to equal
SCEn,;i+(X).

A deterministic evaluation-local algorithm makes at most q oracle queries if on every oracle X
it queries X (j) on at most q distinct indices j.

15.2 Lower bound ¢ > N

Theorem 15.2 (Deterministic evaluation-local lower bound). Fiz (N,i,t). Any deterministic
evaluation-local algorithm that computes SCEy ; +(X) for all evaluators X must make at least N
oracle queries in the worst case.

37

Proof. Let A be deterministic and suppose it makes at most N — 1 oracle queries. Consider any
execution of A on some oracle; let @ C [N] be the set of queried indices, with |Q] < N — 1. Choose
an unqueried index

it e [N\ Q.
By Lemma 6.6 applied to x; j+ = (Cn);j+ # 0, the multiplication matrix M (&, j«) is invertible,

hence its t-th row is nonzero. Therefore there exists £* € [k]| such that

Nyit
e =1

(Definition 6.7; this is exactly Remark 6.10).
Now define two evaluators X and X’ as follows:

o For all queried indices j € @, set X(j) = X'(j) (identical outputs).
o For all unqueried indices j ¢ @, set X (j) =0 and X'(j) = 0, except at j = j*, where:

X(j*) =0¢eFk X'(5*) equals 0 except @« po = 1.

Then A receives identical oracle answers on all its queries under X and X', hence produces the
same output on both.
However, by Lemma 6.8,

SCEN,i1(X) & SCENn,i.(X") = @ mje - (w0 ®)
il
=mje g - (00 1)
= 17

since all other bits agree, and m;= 4« = 1. Thus SCEy;+(X) # SCEn,;+(X’), contradicting correct-
ness of A on both oracles.

Therefore any deterministic evaluation-local algorithm must query all N indices in the worst
case. O

16 Deterministic Witness-Expansion: [y(K,) = #SAT(¢)

This section presents a deterministic construction mapping a Boolean formula ¢ to a bounded-
degree simplicial 2-complex Ky given in the local-oracle model, such that

Bo(Ky;Fa) = #SAT(¢).

In particular, this yields deterministic SAT <,,, Iz, and parsimonious #SAT <,,, Compute-[s.

A key technical constraint is that the local-oracle description requires explicit values (ny, ng, nr).
Hence the per-assignment gadget size must be independent of whether ¢ is satisfied (otherwise one
would need to know #SAT(¢) just to compute ny). We therefore use equal-size gadgets: a “YES
gadget” with S = 1 and a “NO gadget” with 2 = 0, but both with the same counts (|V|, |E|,|T).

16.1 Two equal-size gadget blocks

All homology in this section is over Fs.

38

16.1.1 A sphere gadget (triangulated 52)

Definition 16.1 (Tetrahedral sphere complex S). Let S = (Vs, Eg,Ts) be the simplicial 2-complex
with:

. Vs:=1{0,1,2,3},
e Eg:= (‘gs) (all 6 edges),
o Tg:= (‘gs) (all 4 triangles).

This is the boundary complex of a tetrahedron, hence a triangulation of S?.

16.1.2 A padding forest (no 2-faces)
Definition 16.2 (Forest padding F'). Let F = (Vp, Ep,TF) be the simplicial 2-complex with:
o Vp:={4,5,6,7,8,9,10,11} (8 vertices),
o Er:={{4,5},{5,6},{6,7},{7,8},{8,9},{9,10}} (a length-6 path on {4,...,10}),
o Tp:=0,
and vertex 11 isolated.
Clearly F is 1-dimensional (no triangles), hence S2(F') = 0.
16.1.3 The YES-block and NO-block (same (V, E,T) sizes)
Definition 16.3 (YES-block GV)). Define the YES-block
¢ .= S uF

Then
VEW)=4+8=12, |EGY)=6+6=12, |[T(GW) =4+0=4.

Definition 16.4 (NO-block G(O)). Define the NO-block GO as the disjoint union of four disjoint
filled triangles:

o Vertices: V(G©) :={0,1,...,11}.

o Triangles: T(G©)) := {{0,1,2},{3,4,5},{6,7,8},{9,10,11}}.

o FEdges: E(G(O)) are the union of the 3 edges of each triangle.
Then |V(G®)| =12, |[E(G®)| = 12, |T(G?)| = 4.

Lemma 16.5 (Bounded degree and equal-size property). Both GO and GO are bounded-degree
stmplicial 2-complexes with mazimum vertex degree < 3. Moreover,

(IV|,|E|,|T|) is the same for GY) and GO, namely (12,12,4).
Proof. Equal-size counts were verified in Definitions For bounded degree:
e In S, every vertex is incident to exactly 3 edges and 3 triangles.
e In F', path vertices have degree < 2, and vertex 11 has degree 0; no triangles.

e In G, each triangle vertex is incident to 2 edges and 1 triangle.

Disjoint union does not increase local degrees. Thus the maximum degree is 3. O

39

16.2 Computing 3, of the blocks
16.2.1 B2(5) =1

Lemma 16.6 (82(S;Fo) = 1). For the tetrahedral sphere complex S from Definition|16.1), B2(S;Fa) =
1.

Proof. In S, we have |Ts| = 4 and |Es| = 6, so C2(S) = F5 and C1(S) = F§. Since there are no
3-simplices, Ha(S) = ker(02).
Let the four triangles be

To = {O, 1,2}, T = {O, 1,3}7 Ty = {0, 2,3}, Ty = {1,2,3}.
(1) Existence of a nonzero 2-cycle. Consider ¢ := 79 ® 1 & 10 @ 13 € Co(S). Every edge of S

lies in exactly two of the 7;. Therefore in d2(c), each edge appears with coefficient 2 =0 (mod 2),
s0 02(c) = 0. Hence ¢ € Hy(S), and dim Hy(S) > 1.

(2) dim H2(S) < 1. It suffices to show rank(ds) > 3, because then
dimker(d) = dim Cy — rank(0s) <4 —3 = 1.
Consider the boundaries of 7y, 71, 2. Each contains a unique edge not present in the other two:
o Edge {1,2} appears in 02(7) but not in 92(71) or 02(m2).
« Edge {1, 3} appears in 02(71) but not in 92(1p) or d2(m2).
o Edge {2, 3} appears in 02(72) but not in da(79) or da(71).
Therefore 0a(7), O2(71), O2(72) are linearly independent in C1(S), so rank(ds) > 3.
Combining (1) and (2), we obtain dim Hs(S) = 1, hence [2(S) = 1. O

16.2.2 [5, of triangles and forests

Lemma 16.7 ((; of a single filled triangle is 0). Let D be the simplicial complex consisting of one
triangle {a,b,c} and its three edges and vertices. Then

BQ(D; Fg) =0.
Proof. Here Co(D) = Fy is spanned by {a,b, c}, and
9 ({a,b,c}) ={a,b} ® {a,c} ®{b,c} #0

in C1(D). Hence ker(d2) = {0}, so Ha(D) = 0 and S2(D) = 0. O
Lemma 16.8 (8y(F;Fy) = 0). For the forest padding F (Definition[16.9), B2(F) = 0.
Proof. F has no triangles, so Co(F') = 0, hence Ho(F) = 0. O

Corollary 16.9 (32 of the blocks).
Ba(GW;Fy) =1, Ba(G);Fy) = 0.

Proof. By Lemma and Lemma B2(S) = 1 and p2(F) = 0. By additivity over disjoint
union (Lemma low), Bo(GM) = Bo(S) + Bo(F) = 1.

For G it is the disjoint union of four single triangles, each with 8 = 0 by Lemma by
additivity, S2(G®) = 0. O

40

16.3 Additivity of homology under disjoint unions

Lemma 16.10 (Homology of disjoint unions). Let K = KU Ky be the disjoint union of simplicial
2-complezes. Then for each q € {0,1,2},

Hy(K;F2) = Ho(K1;F2) & Hg(Ka2;Fa).
Proof. Since K7 and K are disjoint (no shared simplices), the chain groups split:
Cq(K) = Cq<K1) ® Cq(K2)
with respect to the basis of simplices. The boundary maps are block-diagonal:
K _ gK K.
9, =0, @0,

Therefore ker(@f) = ker(c’?fl) @ ker(ﬁgﬁ) and similarly for images. Taking quotients yields the
direct sum decomposition on homology. O

Corollary 16.11 (Additivity of 2). For disjoint unions, S2(K1 U Ka) = B2(K1) 4 B2(K2).

16.4 The witness-expansion complex K,

Let ¢ be a Boolean formula on n variables yq, ..., y,—1. We identify assignments with integers in
27].

Definition 16.12 (Assignment decoding). For a € [2"], define asgn(a) € {0,1}" as the length-n
binary expansion of a, i.e., asgn(a) = (ag, ..., apn—1) with

n—1
a = Z aj2].
=0

Definition 16.13 (Witness-expansion complex Ky). Let M := 2". For each a € [M], define a
block

G if g(asgn(a)) = 1,
Co:=
GO if ¢(asgn(a)) = 0.
Define
Ky := |_| Cq.
a€[M]

By Lemma each Cq has bounded degree (at most 3), hence Ky is also bounded-degree with the
same constant bound.

16.5 Parsimonious equality [»(Ky) = #SAT(¢)

Theorem 16.14 (Parsimonious equality). For every Boolean formula ¢,

Bo(Ky;Fa) = #SAT(¢).

41

Proof. By Corollary [16.9] each block C, contributes

1 if ¢(asgn(a)) =1,
0 otherwise.

/82(Ca) - {

By additivity over disjoint unions (Corollary [16.11]),

Ba(Kg) = > Ba(Ca) = Y 1g(asgn(a)) = 1] = #SAT(¢).

a€[M] a€[M]
]

Corollary 16.15 (Deterministic SAT reduction). Let Dy be a local-oracle description of K4. Then
¢ € SAT <= Bs(Kp,;F2) >0 <= Ilg,(Dy) = 1.

Proof. ¢ is satisfiable iff #SAT(¢) > 0. By Theorem[16.14] #SAT(¢) = f2(Kg4). Thus #SAT(¢) >
0 — 52(K¢) > 0. O]

Corollary 16.16 (Parsimonious #SAT reduction). The mapping ¢ — Ky satisfies

#SAT(¢) = fa(Ky; Fa).

Hence #SAT <,,, Compute-0Ss.

16.6 Local-oracle description D, for K,

We now spell out a local-oracle description for K consistent with Definition 2.10, including explicit
global indexing.

16.6.1 Global sizes
Each block C, has (12,12,4) simplices in dimensions 0, 1,2. Therefore:

Definition 16.17 (Global sizes for K,). Let M :=2". Define

ny = 12M, ng = 12M, np = 4M.

16.6.2 Global indexing scheme
Definition 16.18 (Component-local decoding). For a global vertex index v € [ny|, define:

a(v) = H;J € [M], r(v) := v mod 12 € [12].

Similarly for global edge indices e € [ng| and triangle indices T € [nr],

e

a(e) := {12J , s(e) :=emod 12, a(t) = LZJ , q(7) :==7 mod 4.

Thus each vertex/edge/triangle index decodes to a component ID a and a local index within the
12-vertex, 12-edge, 4-triangle block.

42

16.6.3 Local tables for the two block types
Definition 16.19 (YES-block local edge endpoints and triangle vertices). In G
o Local edges s € [12] are:
— Sphere edges (local s =0,...,5):
0:(0,1), 1:(0,2), 2:(0,3), 3:(1,2), 4:(1,3), 5:(2,3).
— Forest edges (local s =6,...,11):
6:(4,5), 7:(5,6), 8:(6,7), 9:(7,8), 10:(8,9), 11:(9,10).
o Local triangles q € [4] are the sphere triangles:

0:(0,1,2), 1:(0,1,3), 2:(0,2,3), 3:(1,2,3).

Definition 16.20 (NO-block local edge endpoints and triangle vertices). In GO, for each q € [4],
the q-th triangle uses vertices (3q,3q + 1,3q + 2). Define:

e Local triangles:
q:(3¢,3¢+1,3¢+2).

o Local edges s € [12]: write ¢ = |s/3] and r = s mod 3. Then

r=0: (3¢,3¢+1), r=1: (3¢,3¢+2), r=2: (3¢+1,3q+2).

16.6.4 Oracles

Let Dy be the description consisting of (ny,ng,nr) and circuits implementing the oracles below.
We emphasize that the oracle computations use ¢ as a subroutine (compiled into a circuit) to decide
whether block a is a YES-block or NO-block.

Definition 16.21 (Oracle Endp,). Given edge index e € [ng]:
1. Decode (a,s) = (a(e), s(e)) (Definition .
2. Compute b := ¢(asgn(a)) € {0,1} (Definition[16.17).

3. If b = 1, use Definition to compute local endpoints (u,v) € [12]2. If b = 0, use
Definition|16.20 to compute local endpoints (u,v) € [12]?.

4. Output global endpoints

Endp,(e) := (12a + u, 12a +v) € [ny]?.

Definition 16.22 (Oracle Vertp,). Given triangle index T € [nr]:
1. Decode (a,q) = (a(1),q(7)).
2. Compute b := ¢(asgn(a)).
3. If b =1, output local triangle vertices from Definition [16.19; if b = 0, output local triangle
vertices from Definition [16.20

43

4. Offset by 12a to get global vertices.

Definition 16.23 (Incidence oracles IncEp, and IncTp,). Fiz A := 3. For a verter indez v € [ny]
and £ € [A]:

1. Decode (a,r) = (a(v),r(v)).
2. Compute b := ¢(asgn(a)).
3. If b = 1, return the {-th incident edge/triangle to local vertex r according to the YES-block

tables implied by Definition |16.19. If b = 0, return the £-th incident edge/triangle to local
vertex v according to the NO-block structure in Definition [16.20,

4. If fewer than A incident edges/triangles exist, return L in the remaining slots.

5. Any returned local edge/triangle index is offset to a global ID by adding 12a (for edges) or 4a
(for triangles).

We omit the full local incidence tables for the YES-block in the main text; they are finite and
can be listed verbatim (and are uniquely determined by Definitions . The NO-block

incidence lists are computable by constant-time arithmetic from (r,f).

Lemma 16.24 (Validity, bounded degree, and size of Dy). The description Dy defined above is a
valid local-oracle description (Definition 2.10) of the simplicial 2-complex Kg. Moreover:

1. Kp, has bounded degree A = 3.
2. The description length |Dg| is polynomial in |¢|.

3. Each oracle query runs in time poly(|¢]).

Proof. Validity. By construction, Ky is a disjoint union of M blocks, each of which is either G
or G, The oracles Endp , and Vertp, return exactly the endpoints /vertices of the edges/triangles
listed in Definitions [I6.19HI6.20] shifted into the component a. Closure holds within each block
by construction (each triangle’s edges are included). Incidence lists are consistent by construction
because they are derived from the same local tables.

Bounded degree. Lemma gives degree < 3 within each block; disjoint union preserves it.

Size/time. The description stores ¢ (or an equivalent circuit) plus fixed-size wiring for the de-
coding arithmetic and local tables. Computing ¢(asgn(a)) is polynomial in |¢|, and all other work
is constant-time arithmetic on indices of length O(n) < O(|¢|). Thus |Dy| = poly(|¢|), and each
oracle query runs in poly(|¢|) time. O

16.7 Complexity consequences (deterministic, non-promise)

Theorem 16.25 (Deterministic many-one reduction SAT <, Ig,). There is a deterministic
polynomial-time many-one reduction f mapping formulas ¢ to local-oracle descriptions Dy such
that

¢ € SAT > Ilg,(Dy) = 1.

Proof. Take f(¢) := Dy as constructed above. By Corollary [16.15{ and Lemma [16.24
¢ € SAT <= B2(Kp,) >0 = Ilg,(Dy) = 1.

The mapping is polynomial-time because the output description size is polynomial in |@|. O

44

Theorem 16.26 (Parsimonious reduction #SAT <,, Compute-f52). There is a deterministic
polynomial-time many-one reduction from #SAT to Compute-By satisfying

#SAT(¢) = B2(Kp,; Fa).
Proof. Immediate from Theorem [16.14] and Lemma [16.24 0
Important limitation (explicitly stated). Theorem [16.25(shows NP-hardness of IIg, under
deterministic many-one reductions in the local-oracle model. It does not establish that Iz, € NP
(or any particular upper bound class) because, under succinct representations, certificates for S > 0

(e.g., an explicit nonzero 2-cycle) may be exponentially large in |D|. This paper does not prove an
NP upper bound for Ilg,.

17 Unconditional Circuit Lower Bounds on an Explicit Parity-
Based Subfamily

This section shows how to derive unconditional lower bounds against certain nonuniform cir-
cuit/formula classes by exhibiting an explicit parity-based restriction of I1g, that computes PARITY.
17.1 A bounded linear system for parity

Let PARITY : {0,1}" — {0,1} be PARITY (z) =20 @ -+ ® Tp_1.
We build, from z, a bounded-arity bounded-occurrence homogeneous system SysPar(z) such
that it has a nonzero solution iff PARITY (z) = 1.

Definition 17.1 (Parity system SysPar(x)). Fix n > 1 and x € {0,1}". Define SysPar(x) as a
homogeneous Fo-linear system with variables:

e a switch Aroot,

e coOpies Ay, ...y Ap—1,

gated bits ug, ..., Up_1,

e a sum variable S,

e and internal variables of EqTree and XorTree gadgets.
FEquations:

1. EqTree(Aroot; Aoy« - -5 An—1)-

2. For each j € [n], the gating equation:

o ifx; =0, include u; =0,

o ifx; =1, include u; & \j = 0.
3. XorTree(S; ug, ..., Up—1)-
4. Final check S & Moot = 0.

All equations have arity < 3. Variable occurrences are bounded by an absolute constant if the
trees are chosen as rooted binary trees (as in Part 2).

45

Lemma 17.2 (Correctness of SysPar(x)). SysPar(x) has a nonzero solution if and only if PARITY (x) =
1.

Proof. The proof is the same “switch” structure as Lemma 8.2 and Theorem 8.4, specialized to a

1-bit XOR.

o If Moot = 0, then EqTree forces A\; = 0 for all j. Then each gating equation forces u; = 0
(either directly if ; = 0, or because u; = A\; = 0 if z; = 1). Then XorTree forces S =
EBj uj = 0. The final check S @ Moot = 0 holds. Hence the all-zero assignment is a solution.

 Consider a solution with Ayt = 1. EqTree forces A; = 1 for all j. Then each gating equation
sets
0 if T; = 0,
U=,
1 ifz; =1,

i.e., uj = x;j. XorTree enforces S =@, u; = D;z; = PARITY (z). The final check S@® oot =
0 becomes S = 1, hence requires PARITY (z) = 1.

Therefore, a nonzero solution exists (equivalently, a solution with Ajoor = 1 exists) iff PARITY (z) =
1. O

17.2 Mapping parity systems to Ilz, instances
We use the system-to-topology mapping already established:

o Part 3: K°V(Sys) with Hs = Sol(Sys).
o Part 4: simplicialization K (Sys) preserving Hs.

Definition 17.3 (Parity-to-Ilg, map ®g). For x € {0,1}", define ®g(x) to be a local-oracle
description of the simplicial complex
K (SysPar(z)).

(Concretely, ®g(x) is obtained by applying the constructions of Sections 9-11 to SysPar(x), then
encoding the resulting bounded-degree simplicial complex by local-oracles.)

Theorem 17.4 (Parity realized by Iz, on an explicit subfamily). For all z € {0,1}",
Mg, (e (z)) = PARITY (z).
Proof. By Corollary for any bounded system Sys,
B2(K (Sys); F2) > 0 <= Sys has a nonzero solution.
Applying this to SysPar(z), we get
g, (P (z)) =1 <= SysPar(z) has a nonzero solution.

By Lemma this is equivalent to PARITY (z) = 1. O

46

17.3 Projection/AC° nature of ®,: encoding-dependent and isolated

To translate Theorem [I7.4]into nonuniform circuit lower bounds, we need a precise statement about
how z is embedded into the bitstring encoding of ®4 (x). This is encoding-dependent, so we isolate
it.

Definition 17.5 (Projection reduction; encoding-dependent). Fiz a concrete bit-level encoding
scheme Enc(-) for local-oracle descriptions D. A family of maps

pn {0,137 — {0, 1}

is a projection if every output bit (pn(z))i is either a constant in {0,1}, or equals xj, or equals
—xj, for some j € [n].

Lemma 17.6 (Projection property of ®g; proof in Appendix C). Under the explicit encoding
convention Enc fized in Appendiz C, the mapping

x — Enc(®g(z))

is a projection {0,1}"™ — {0, 1} with m(n) = ©O(n).
Proof status: proved in Appendiz C.

Comment: The construction of SysPar(z) differs across x only in the local choice of which of two
fized gate patterns appears in each gating constraint; the encoding is chosen so that these choices
correspond to designated bits equal to z; (or —x;), while all other description bits are fixed constants.

17.4 Unconditional lower bounds (standard parity lower bounds; citation place-
holders)

We state three consequences. Each uses a standard lower bound for PARITY as a black box and
therefore requires a citation placeholder.

17.4.1 AC° lower bound

Theorem 17.7 (Unconditional AC® lower bound for IIg, as a promise problem). There is no
nonuniform AC circuit family {Cy,} that correctly computes g, (D) on all valid local-oracle de-
scriptions D of bounded-degree simplicial 2-complexes (in the sense of Definition 2.10 and the
chosen encoding).

Proof. Assume for contradiction that such an AC family exists. Fix n. Consider the restriction
of Cpy(n) to the set
Frn = {Enc(®g(z)) : z € {0,1}"},

which consists entirely of valid instances by construction.

By Lemma Enc(®g(z)) is obtained from z by a projection p,. Substituting the projection
wires into Cf, () yields an AC" circuit for PARITY (z), because by Theoremthe output agrees
with PARITY (z) on all inputs z.

This contradicts the standard result PARITY ¢ AC? (citation placeholder). Hence no such
AC? family exists. O

47

17.4.2 De Morgan formula lower bound

Theorem 17.8 (Unconditional De Morgan formula lower bound for Ilg, on an explicit subfamily).
Let F,, be as above. Any De Morgan formula that correctly computes Ilg, on F, must have size

Q(n?).

Proof. By Theorem and Lemma IIg, restricted to F,, computes PARITY under a pro-
jection. Projection substitutions do not increase formula size by more than a constant factor.
Therefore any formula computing Ilg, on F, yields a formula computing PARITY on {0,1}" of
comparable size. By the standard quadratic lower bound for parity in De Morgan formulas (e.g.,
Khrapchenko-type bounds; citation placeholder), the size must be Q(n?). O

17.4.3 AC°[p] lower bound for odd primes p

Theorem 17.9 (Unconditional AC°[p] lower bound for odd primes). Fiz an odd prime p. There
is no nonuniform AC°[p] circuit family that correctly computes g, on all valid instances (in the
same sense as Theorem . In particular, Mg, restricted to F, is not in ACO[p].

Proof. The proof is identical to Theorem replacing AC? by ACO[p] and using the standard
result that PARITY ¢ AC[p] for odd primes p (Razborov-Smolensky-type lower bounds; citation
placeholder). O

Remark 17.10 (Scope note (explicit)). Theorems are unconditional but rely on standard
external lower bounds for PARITY. They are statements about nonuniform circuit/formula families
computing Ilg, correctly on the promise set of valid encodings, which is the appropriate notion for
a promise problem.

18 Discussion, Limitations, and Open Issues

18.1 Summary of the validated contributions

The paper establishes the following validated core results:

1. Algebraic linearization of SCE. The SCE output bit SCEy ; +(X) is an explicit Fo-linear
form in evaluator bits (Part 2, Lemma 6.8).

2. Bounded-occurrence system encoding. The system SysBit(NN,i,¢,b, X) has a nonzero
solution iff SCEn,;+(X) = b (Part 2, Theorem 8.4), with constant arity and occurrence
(Lemma 8.5).

3. Topological encoding of linear systems. For a bounded system Sys, the CW complex
K°V(Sys) satisfies Ho(KV(Sys);Fy) = Sol(Sys) (Part 3, Theorem 10.9). After a careful
simplicialization via triangular subdivision and barycentric subdivision, homology is preserved

(Part 4, Corollary [11.14)).

4. ProbeBit pipeline results (promise-family). The map ProbeBit yields an equivalence
B2 >0 <= SCE = b (Part 4, Theorem , leading to ®©P-completeness and SAT <.,
on the promise family Im(ProbeBit) (Part 4, Theorems and [14.2)), and a deterministic
evaluation-local query lower bound ¢ > N for SCE (Part 4, Theorem [15.2]).

48

5. Witness-expansion deterministic reductions (non-promise). The deterministic con-
struction K satisfies f2(Ky) = #SAT(¢), hence SAT <,,, Ilg, and #SAT <,,, Compute-/32
(Part 5, Theorems [16.25| and [16.26]).

6. Unconditional circuit lower bounds via parity subfamilies. Using SysPar(z) and the
established system-to-topology mapping, we obtain an explicit parity-based restriction of Ilg,
and unconditional lower bounds against ACY, De Morgan formulas, and AC°[p] (Part 5,
Theorems [17.7H17.9)), modulo standard parity lower bounds (citation placeholders).
18.2 Why these results do not resolve P vs NP

Theorem |16.25| shows NP-hardness of Ilg, in the local-oracle model, and Theorem gives OP-
completeness on a promise family. Neither implies P #£ NP, because:

e NP-hardness does not contradict P = NP; if P = NP, NP-hard problems can still be in P.
o @P-completeness on a promise family does not by itself yield a classical separation either.

e The paper does not establish 1z, € NP, which would be needed even to discuss NP-
completeness in the usual total-function sense.

Thus, the results should be read as evidence of hardness phenomena for succinct topological invari-
ants, not as a separation.
18.3 Promise-family hardness vs unrestricted deterministic hardness

There is a deliberate separation:

o ProbeBit results are strongest in parity-counting terms (®P-completeness), but they are
stated on Im(ProbeBit), a promise family.

o Witness-expansion yields an unrestricted deterministic reduction from SAT, but does not
directly yield ©P-completeness statements.

18.4 Remaining technical dependencies and clearly identified gaps

This paper maintains strict marking of dependencies:
» Standard external results (citation placeholders):

— Valiant—Vazirani isolation lemma (used in Theorem [14.2)).
— @®SAT is ®P-complete (used in Theorem [13.3)).
— PARITY lower bounds for ACY, formulas, and AC°[p] (used in Theorems [17.7}{17.9).

+ Encoding-dependent steps (proved or deferred):

— The “projection property” of the parity subfamily is explicitly proved in Appendix C
(Lemma [17.6]).

— For ProbeBit, the fully explicit bit-level encoding of local-oracle circuits is nontrivial;
Part 4’s Lemma is a construction argument with finite casework, and full mechan-
ical encoding details can be expanded further if a completely formal machine-checked
implementation is required.

49

18.5 Open problems suggested by the results

1. Upper bounds for Ilg, in the local-oracle model. Determine whether 1z, lies in NP,
coNP, ¥ PSPACE, etc., under this input model (requires careful modeling of validity
promises and witnesses).

2. Promise elimination or promise robustness. For the ProbeBit pipeline, identify natural
syntactic constraints under which the promise family can be recognized (or made canonical),
enabling sharper “non-promise” complexity statements.

3. Derandomization of the SAT <,, route. The isolation-based route is randomized. Deter-
ministic analogues would require additional derandomization ingredients beyond this paper’s
scope.

4. Alternative invariants and dimensions. Extend the framework to other homological
invariants or to other dimensions, clarifying what aspects are specific to 2-complexes and
mod-2 coefficients.

Appendix B. Boolean Circuits for F,. Arithmetic (Supplementary)

This appendix supports Remark 2.4 and Lemma 6.9 by giving explicit polynomial-size circuit
constructions for basic For arithmetic under a fixed irreducible polynomial basis. The statements
here are “internal completeness” results; they are not the main novelty of the paper.

Lemma 18.1 (Addition and multiplication in For have polynomial-size Boolean circuits). Fiz an
irreducible polynomial py(z) € Fa[z] of degree k and represent For = Fo[z]/(pr) using the polynomial
basis {1,c,...,a*"1}. Then:

o Addition is computed by k XOR gates (size O(k)).
o Multiplication is computed by a Boolean circuit of size O(k?).

Proof. Addition is coordinate-wise XOR.

For multiplication, represent field elements as polynomials of degree < k with coefficients in Fs.
Compute the polynomial product (degree < 2k) by convolution: each output coefficient is an XOR
of ANDs of input bits; this uses O(k?) AND gates and O(k?) XOR gates. Then reduce modulo py;:
since py is fixed for the given k, reduction is an Fo-linear map from F%k_l to ¥ ’5, implemented by
O(k?) XOR gates. Total size O(k?). O

Lemma 18.2 (Inversion has polynomial-size circuits). Under the same representation, inversion
w—u"t on]F;k has polynomial-size Boolean circuits.

Proof (explicit exponentiation). For nonzero u, u=! = u2*=2 in For. Compute w22 by repeated

squaring and multiplication:

e Squaring in characteristic two is Fo-linear and can be implemented by a linear circuit of size

O(k?) (or smaller).

o Use a standard square-and-multiply exponentiation strategy with O(k) multiplications and
squarings, giving total size polynomial in k£ when using Lemma for multiplication.

This yields nonuniform polynomial-size circuits for inversion. O

50

Appendix C. Encoding Conventions and Projection Reductions (Sup-
plementary)
This appendix fixes an explicit encoding convention sufficient to make Lemma [17.6| precise and

to justify the use of “projection reductions” in Section 17. It is not intended to be the most
space-efficient encoding; it is chosen for clarity and for the projection property.

C.1. Fixed-length encodings

For each input length parameter n, we encode integers and identifiers using fixed-width binary
fields of width w(n) = ©(logn). This ensures that all strings Enc(®g(z)) for |z| = n have the same
length m(n).

C.2. Encoding of the parity family ®4(z)

We consider only the restricted family ®4(z) used in Section 17. Its underlying system SysPar(x)
has a fixed template consisting of:

o fixed EqTree and XorTree wiring for size n,

» for each j, one gating equation whose type bit is x;: type 0 means unary constraint u; = 0,
type 1 means binary constraint u; & A; = 0,

« one final check equation.
We encode $g(x) as:

1. a header describing n and fixed size parameters for the resulting simplicial complex (as fixed-
width constants depending on n), and

2. a fixed “template” description of the oracles for K (SysPar(z)), where the only x-dependent
bits are the n gating type bits xq,...,z,—1 copied into designated constant positions of the
oracle descriptions.

Under this convention, changing x; flips only a constant number of bits in the description, and
those bits are literal copies of z; or —x;.

C.3. Projection definition and proof

Definition 18.3 (Projection). A mapping p : {0,1}" — {0,1}™ is a projection if each output bit
is a constant or equals an input bit x; or —x;.

Lemma 18.4 (Projection property of ®g). With the encoding convention above, x — Enc(®g(z))
is a projection, and the output length satisfies m(n) = O(n).

Proof. All header fields and all template wiring bits are constants depending only on n. The only
x-dependent part of SysPar(x) is the choice, for each j, between two fixed gating constraints; we
encode that choice by a single designated bit in the description, set equal to ;. No other description
bit depends on x. Therefore each output bit is either constant or equals some z;. The total number
of such bits is O(n), hence m(n) = ©(n). O

Remark 18.5 (Scope). This encoding convention is sufficient for Section 17. It is not a fully
general encoding for arbitrary local-oracle descriptions used elsewhere in the paper (e.g., ProbeBit for
exponentially large complexes). The projection lower bound requires only this restricted subfamily.

51

Bibliography Placeholders (No fabricated references)

The following are placeholders for standard results used in the paper:
o [VV] Valiant—Vazirani isolation lemma (randomized reduction from SAT to UniqueSAT).
o [®SAT] Standard completeness of GSAT for &P.
+ [ACO-Parity] Standard lower bound PARITY ¢ AC° (Hastad-type).

o [Formula-Parity| Standard quadratic lower bound for parity in De Morgan formulas (Khrapchenko-
type).

« [ACOp-Parity] Standard lower bound PARITY ¢ ACY[p] for odd primes p (Razborov—
Smolensky-type).

(Full bibliographic entries are intentionally omitted here and should be filled with correct cita-
tions in a final submission.)

52

	Introduction
	Motivation and context
	Two reduction pipelines
	Main results and careful scope statements
	What this paper does not claim
	Organization of the paper (across five parts)

	Notation and Preliminaries
	Basic notation and conventions
	Finite fields of characteristic two
	Simplicial (2)-complexes and (F2)-homology
	Bounded degree and local-oracle descriptions
	Complexity classes and reductions used later

	Computational Problems Studied
	Betti-2 positivity and related function problems
	A succinct Cauchy-based evaluation problem (SCE-Dec)
	Promise families and scope of hardness statements

	Background and Related Work (brief)
	Status Markers and Deferred Technical Items
	Proof-deferred items (will be proved inside this paper)
	Standard external results (citation placeholders required)
	Remaining ``formalization risk'' points (to be resolved in Parts 4–5)

	Field-Linearity and Bit-Linear Forms for SCE
	Cauchy matrix over F2k
	Evaluators and the SCE target bit
	Multiplication by a fixed field element is F2-linear
	The SCE output bit is an explicit XOR of evaluator bits

	Homogeneous F2-Linear Systems and Bounded Gadgets
	Systems, arity, and occurrence
	Equality gadget
	XOR-sum gadget
	Boundedness properties of the gadgets

	The System SysBit: Construction and Correctness
	Intuition: a ``switch'' and a forced XOR check
	Formal definition of SysBit
	The switch property
	The forced XOR value when root=1
	Correctness: nonzero solution iff SCE=b
	Bounded arity and bounded occurrence

	A CW 2-Complex Encoding of a Bounded Linear System
	Conventions for input systems (boundedness and ordering)
	Equation triangles in the 1-skeleton
	The CW 2-complex Kcw(Sys)
	Bounded local complexity

	Cellular Chains and the Isomorphism H2 .5-.5.5-.5.5-.5.5-.5Sol
	Cellular chain groups and boundary map over F2
	Boundary of a variable 2-cell
	The variable-to-2-chain map
	Independence of equation triangles
	Main theorem: H2(Kcw(Sys);F2) .5-.5.5-.5.5-.5.5-.5Sol(Sys)
	Application to SysBit and SCE-Dec (CW level)

	From Kcw(Sys) to a Bounded-Degree Simplicial 2-Complex
	Why the simplicialization must respect boundary occurrences
	The boundary walk for each CW 2-cell
	Triangulating each 2-cell as a disk with distinct boundary occurrences
	Gluing triangulated disks to the 1-skeleton: a triangular CW complex
	K(Sys) is homeomorphic to Kcw(Sys)
	Barycentric subdivision to obtain an honest simplicial 2-complex
	Homology consequences and Betti-2 positivity
	Bounded degree of K(Sys)

	ProbeBit: A Succinct Bounded-Degree Simplicial Complex Encoding an SCE Bit
	Definition of ProbeBit
	Correctness of ProbeBit
	Succinctness and efficient local-oracle access

	P-Completeness of 2 on Im(ProbeBit)
	Membership: SCE-DecP
	Hardness: SATm SCE-Dec
	P-completeness of 2 on Im(ProbeBit)

	A One-Sided Randomized SAT Reduction on Im(ProbeBit)
	Isolation lemma (standard external result)
	SATrp2 on Im(ProbeBit)

	An Unconditional Evaluation-Local Lower Bound for SCE
	Model: evaluation-local algorithms
	Lower bound qN

	Deterministic Witness-Expansion: 2(K)=#SAT()
	Two equal-size gadget blocks
	A sphere gadget (triangulated S2)
	A padding forest (no 2-faces)
	The YES-block and NO-block (same (V,E,T) sizes)

	Computing 2 of the blocks
	2(S)=1
	2 of triangles and forests

	Additivity of homology under disjoint unions
	The witness-expansion complex K
	Parsimonious equality 2(K)=#SAT()
	Local-oracle description D for K
	Global sizes
	Global indexing scheme
	Local tables for the two block types
	Oracles

	Complexity consequences (deterministic, non-promise)

	Unconditional Circuit Lower Bounds on an Explicit Parity-Based Subfamily
	A bounded linear system for parity
	Mapping parity systems to 2 instances
	Projection/AC0 nature of : encoding-dependent and isolated
	Unconditional lower bounds (standard parity lower bounds; citation placeholders)
	AC0 lower bound
	De Morgan formula lower bound
	AC0[p] lower bound for odd primes p

	Discussion, Limitations, and Open Issues
	Summary of the validated contributions
	Why these results do not resolve P vs NP
	Promise-family hardness vs unrestricted deterministic hardness
	Remaining technical dependencies and clearly identified gaps
	Open problems suggested by the results

